物联网环境下基于时空约束的储能电动汽车充电桩动态负载预测

Yusong Zhou
{"title":"物联网环境下基于时空约束的储能电动汽车充电桩动态负载预测","authors":"Yusong Zhou","doi":"10.1515/ijeeps-2023-0323","DOIUrl":null,"url":null,"abstract":"Abstract This paper puts forward the dynamic load prediction of charging piles of energy storage electric vehicles based on time and space constraints in the Internet of Things environment, which can improve the load prediction effect of charging piles of electric vehicles and solve the problems of difficult power grid control and low power quality caused by the randomness of charging loads in time and space. After constructing a traffic road network model based on the Internet of Things, a travel chain model with different complexity and an electric vehicle charging model, the travel chain is randomly extracted. With the shortest travel time as a constraint, combined with the traffic road network model based on the Internet of Things, the travel route and travel time are determined. According to the State of Charge (SOC) and the travel destination, the location and charging time of the energy storage electric vehicle charging pile are determined. After obtaining the time-space distribution information of the energy storage electric vehicle charging pile at different times and in different regions, it is used as the input of the deep multi-step time-space dynamic neural network, and the network output is the dynamic electric vehicle charging pile. The experimental results show that this method can realize the dynamic load prediction of electric vehicle charging piles. When the number of stacking units is 11, the indexes of Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are the lowest and the index of R 2 is the largest. The load of charging piles in residential areas and work areas exists in the morning and evening peak hours, while the load fluctuation of charging piles in other areas presents a decentralized change law; The higher the complexity of regional traffic network, the greater the load of electric vehicle charging piles in the morning rush hour.","PeriodicalId":510163,"journal":{"name":"International Journal of Emerging Electric Power Systems","volume":"5 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic load prediction of charging piles for energy storage electric vehicles based on Space-time constraints in the internet of things environment\",\"authors\":\"Yusong Zhou\",\"doi\":\"10.1515/ijeeps-2023-0323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper puts forward the dynamic load prediction of charging piles of energy storage electric vehicles based on time and space constraints in the Internet of Things environment, which can improve the load prediction effect of charging piles of electric vehicles and solve the problems of difficult power grid control and low power quality caused by the randomness of charging loads in time and space. After constructing a traffic road network model based on the Internet of Things, a travel chain model with different complexity and an electric vehicle charging model, the travel chain is randomly extracted. With the shortest travel time as a constraint, combined with the traffic road network model based on the Internet of Things, the travel route and travel time are determined. According to the State of Charge (SOC) and the travel destination, the location and charging time of the energy storage electric vehicle charging pile are determined. After obtaining the time-space distribution information of the energy storage electric vehicle charging pile at different times and in different regions, it is used as the input of the deep multi-step time-space dynamic neural network, and the network output is the dynamic electric vehicle charging pile. The experimental results show that this method can realize the dynamic load prediction of electric vehicle charging piles. When the number of stacking units is 11, the indexes of Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are the lowest and the index of R 2 is the largest. The load of charging piles in residential areas and work areas exists in the morning and evening peak hours, while the load fluctuation of charging piles in other areas presents a decentralized change law; The higher the complexity of regional traffic network, the greater the load of electric vehicle charging piles in the morning rush hour.\",\"PeriodicalId\":510163,\"journal\":{\"name\":\"International Journal of Emerging Electric Power Systems\",\"volume\":\"5 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Emerging Electric Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ijeeps-2023-0323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Electric Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijeeps-2023-0323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文提出了物联网环境下基于时空约束的储能电动汽车充电桩动态负荷预测方法,可以提高电动汽车充电桩的负荷预测效果,解决充电负荷在时间和空间上的随机性带来的电网控制难、电能质量低等问题。在构建基于物联网的交通路网模型、不同复杂度的出行链模型和电动汽车充电模型后,随机提取出行链。以最短出行时间为约束条件,结合基于物联网的交通路网模型,确定出行路线和出行时间。根据充电状态(SOC)和出行目的地,确定储能电动汽车充电桩的位置和充电时间。获得储能电动汽车充电桩在不同时间、不同区域的时空分布信息后,将其作为深度多步时空动态神经网络的输入,网络输出即为动态电动汽车充电桩。实验结果表明,该方法可以实现电动汽车充电桩的动态载荷预测。当堆垛单元数为 11 个时,平均绝对误差(MAPE)和均方根误差(RMSE)指标最小,R 2 指标最大。居民区和工作区充电桩负荷存在早晚高峰时段,其他区域充电桩负荷波动呈现分散变化规律;区域交通网络复杂程度越高,早高峰时段电动汽车充电桩负荷越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic load prediction of charging piles for energy storage electric vehicles based on Space-time constraints in the internet of things environment
Abstract This paper puts forward the dynamic load prediction of charging piles of energy storage electric vehicles based on time and space constraints in the Internet of Things environment, which can improve the load prediction effect of charging piles of electric vehicles and solve the problems of difficult power grid control and low power quality caused by the randomness of charging loads in time and space. After constructing a traffic road network model based on the Internet of Things, a travel chain model with different complexity and an electric vehicle charging model, the travel chain is randomly extracted. With the shortest travel time as a constraint, combined with the traffic road network model based on the Internet of Things, the travel route and travel time are determined. According to the State of Charge (SOC) and the travel destination, the location and charging time of the energy storage electric vehicle charging pile are determined. After obtaining the time-space distribution information of the energy storage electric vehicle charging pile at different times and in different regions, it is used as the input of the deep multi-step time-space dynamic neural network, and the network output is the dynamic electric vehicle charging pile. The experimental results show that this method can realize the dynamic load prediction of electric vehicle charging piles. When the number of stacking units is 11, the indexes of Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are the lowest and the index of R 2 is the largest. The load of charging piles in residential areas and work areas exists in the morning and evening peak hours, while the load fluctuation of charging piles in other areas presents a decentralized change law; The higher the complexity of regional traffic network, the greater the load of electric vehicle charging piles in the morning rush hour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信