{"title":"铝/聚氯乙烯泡沫填充 Al6063-T5 管的准静态轴向挤压研究","authors":"M. M. Yalçın","doi":"10.1515/mt-2023-0273","DOIUrl":null,"url":null,"abstract":"Abstract This study experimentally investigated the energy-absorbing capability of foam-filled 6063-T5 aluminum tubes. Thus, different sample combinations were created with two different foams, PVC (80 kg m−3) and aluminum (200, 350 kg m−3), which were used as filling materials. The first group of samples consisted of uniform foam-filled aluminum tubes. In contrast, tubes were filled with radially graded foams in the second group, which included a ring PVC foam and a cylindrical aluminum foam in the center. Empty tube absorbed 329 J, while it reached the values of 384, 488, and 606 J by using PVC and low- and high-density aluminum foams, respectively. The specific energy absorption value of the empty tube was obtained as 23.2 J g−1. In comparison, it was 19.3 J g−1 in the high-density aluminum foam-filled sample, although it absorbed the highest energy value. This shows that high-density aluminum foam was inefficient in terms of the crashworthiness of the structure. Finally, the best sample regarding the specific energy absorption and crush force efficiency was obtained in the sample where the PVC foam ring and high-density aluminum tube were used together. This sample had 7 % higher specific energy absorption and 34 % higher crush force efficiency than the empty tube.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":"15 6","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on quasi-static axial crushing of Al/PVC foam-filled Al6063-T5 tubes\",\"authors\":\"M. M. Yalçın\",\"doi\":\"10.1515/mt-2023-0273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study experimentally investigated the energy-absorbing capability of foam-filled 6063-T5 aluminum tubes. Thus, different sample combinations were created with two different foams, PVC (80 kg m−3) and aluminum (200, 350 kg m−3), which were used as filling materials. The first group of samples consisted of uniform foam-filled aluminum tubes. In contrast, tubes were filled with radially graded foams in the second group, which included a ring PVC foam and a cylindrical aluminum foam in the center. Empty tube absorbed 329 J, while it reached the values of 384, 488, and 606 J by using PVC and low- and high-density aluminum foams, respectively. The specific energy absorption value of the empty tube was obtained as 23.2 J g−1. In comparison, it was 19.3 J g−1 in the high-density aluminum foam-filled sample, although it absorbed the highest energy value. This shows that high-density aluminum foam was inefficient in terms of the crashworthiness of the structure. Finally, the best sample regarding the specific energy absorption and crush force efficiency was obtained in the sample where the PVC foam ring and high-density aluminum tube were used together. This sample had 7 % higher specific energy absorption and 34 % higher crush force efficiency than the empty tube.\",\"PeriodicalId\":18231,\"journal\":{\"name\":\"Materials Testing\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/mt-2023-0273\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2023-0273","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Investigation on quasi-static axial crushing of Al/PVC foam-filled Al6063-T5 tubes
Abstract This study experimentally investigated the energy-absorbing capability of foam-filled 6063-T5 aluminum tubes. Thus, different sample combinations were created with two different foams, PVC (80 kg m−3) and aluminum (200, 350 kg m−3), which were used as filling materials. The first group of samples consisted of uniform foam-filled aluminum tubes. In contrast, tubes were filled with radially graded foams in the second group, which included a ring PVC foam and a cylindrical aluminum foam in the center. Empty tube absorbed 329 J, while it reached the values of 384, 488, and 606 J by using PVC and low- and high-density aluminum foams, respectively. The specific energy absorption value of the empty tube was obtained as 23.2 J g−1. In comparison, it was 19.3 J g−1 in the high-density aluminum foam-filled sample, although it absorbed the highest energy value. This shows that high-density aluminum foam was inefficient in terms of the crashworthiness of the structure. Finally, the best sample regarding the specific energy absorption and crush force efficiency was obtained in the sample where the PVC foam ring and high-density aluminum tube were used together. This sample had 7 % higher specific energy absorption and 34 % higher crush force efficiency than the empty tube.
期刊介绍:
Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.