基于无限傅立叶余弦变换的拉曼努强积分的后果

IF 1.1 1区 哲学 0 PHILOSOPHY
ANALYSIS Pub Date : 2024-01-11 DOI:10.1515/anly-2023-0056
S. Dar, M. Kamarujjama, W. M. Shah, Daud
{"title":"基于无限傅立叶余弦变换的拉曼努强积分的后果","authors":"S. Dar, M. Kamarujjama, W. M. Shah, Daud","doi":"10.1515/anly-2023-0056","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we express a generalization of the Ramanujan integral I ⁢ ( α ) {I(\\alpha)} with the analytical solutions, using the Laplace transform technique and some algebraic relation or the Pochhammer symbol. Moreover, we evaluate some consequences of a generalized definite integral ϕ * ⁢ ( υ , β , a ) {\\phi^{*}(\\upsilon,\\beta,a)} . The well-known special cases appeared, whose solutions are possible by Cauchy’s residue theorem, and many known applications of the integral I ⁢ ( a , β , υ ) {I(a,\\beta,\\upsilon)} are discussed by the Leibniz rule for differentiation under the sign of integration. Further, one closed-form evaluation of the infinite series of the F 0 1 ⁢ ( ⋅ ) {{}_{1}F_{0}(\\,\\cdot\\,)} function is deduced. In addition, we establish some integral expressions in terms of the Euler numbers, which are not available in the tables of the book of Gradshteyn and Ryzhik.","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"23 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consequences of an infinite Fourier cosine transform-based Ramanujan integral\",\"authors\":\"S. Dar, M. Kamarujjama, W. M. Shah, Daud\",\"doi\":\"10.1515/anly-2023-0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we express a generalization of the Ramanujan integral I ⁢ ( α ) {I(\\\\alpha)} with the analytical solutions, using the Laplace transform technique and some algebraic relation or the Pochhammer symbol. Moreover, we evaluate some consequences of a generalized definite integral ϕ * ⁢ ( υ , β , a ) {\\\\phi^{*}(\\\\upsilon,\\\\beta,a)} . The well-known special cases appeared, whose solutions are possible by Cauchy’s residue theorem, and many known applications of the integral I ⁢ ( a , β , υ ) {I(a,\\\\beta,\\\\upsilon)} are discussed by the Leibniz rule for differentiation under the sign of integration. Further, one closed-form evaluation of the infinite series of the F 0 1 ⁢ ( ⋅ ) {{}_{1}F_{0}(\\\\,\\\\cdot\\\\,)} function is deduced. In addition, we establish some integral expressions in terms of the Euler numbers, which are not available in the tables of the book of Gradshteyn and Ryzhik.\",\"PeriodicalId\":47773,\"journal\":{\"name\":\"ANALYSIS\",\"volume\":\"23 4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANALYSIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2023-0056\",\"RegionNum\":1,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANALYSIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2023-0056","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文利用拉普拉斯变换技术和一些代数关系或波哈默符号,用解析解表达了拉马努强积分 I ( α ) {I(\alpha)} 的广义。此外,我们还评估了广义定积分 ϕ * ( υ , β , a ) {\phi^{*}(\upsilon,\beta,a)} 的一些后果。出现了众所周知的特例,这些特例的解可以通过考奇残差定理求得,而且积分 I ( a , β , υ ) {I(a,\beta,\upsilon)} 的许多已知应用都是通过积分符号下微分的莱布尼兹法则来讨论的。此外,我们还推导出了 F 0 1 ( ⋅ ) {{}_{1}F_{0}(\,\cdot\,)} 函数无穷级数的一个闭式求值。此外,我们还建立了一些以欧拉数为单位的积分表达式,这些表达式在格拉德什泰因和雷日克的书中是没有的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consequences of an infinite Fourier cosine transform-based Ramanujan integral
Abstract In this paper, we express a generalization of the Ramanujan integral I ⁢ ( α ) {I(\alpha)} with the analytical solutions, using the Laplace transform technique and some algebraic relation or the Pochhammer symbol. Moreover, we evaluate some consequences of a generalized definite integral ϕ * ⁢ ( υ , β , a ) {\phi^{*}(\upsilon,\beta,a)} . The well-known special cases appeared, whose solutions are possible by Cauchy’s residue theorem, and many known applications of the integral I ⁢ ( a , β , υ ) {I(a,\beta,\upsilon)} are discussed by the Leibniz rule for differentiation under the sign of integration. Further, one closed-form evaluation of the infinite series of the F 0 1 ⁢ ( ⋅ ) {{}_{1}F_{0}(\,\cdot\,)} function is deduced. In addition, we establish some integral expressions in terms of the Euler numbers, which are not available in the tables of the book of Gradshteyn and Ryzhik.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ANALYSIS
ANALYSIS PHILOSOPHY-
CiteScore
1.30
自引率
12.50%
发文量
68
期刊介绍: Analysis is the most established and esteemed forum in which to publish short discussions of topics in philosophy. Articles published in Analysis lend themselves to the presentation of cogent but brief arguments for substantive conclusions, and often give rise to discussions which continue over several interchanges. A wide range of topics are covered including: philosophical logic and philosophy of language, metaphysics, epistemology, philosophy of mind, and moral philosophy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信