{"title":"从埃尔朗根视角看$text{SL}(3,\\mathbb{R})$ 的投影作用几何学","authors":"D. Biswas, Ipsita Rajwar","doi":"10.52737/18291163-2024.16.1-1-28","DOIUrl":null,"url":null,"abstract":"In this paper, we have investigated the projective action of the Lie group $\\text{SL}(3,\\mathbb{R})$ on the homogeneous space $\\mathbb{RP}^2$. In particular, we have studied the action of the subgroups of $\\text{SL}(3,\\mathbb{R})$ on the non-degenerate conics in the space $\\mathbb{RP}^2$. Using the Iwasawa decomposition of $\\text{SL}(2,\\mathbb{R})$, we demonstrate that the isotropy subgroup of the projective unit circle is isomorphic to $\\text{PSL}(2,\\mathbb{R})$ under certain conditions.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":"4 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Geometry of the Projective Action of $\\\\text{SL}(3,\\\\mathbb{R})$ from the Erlangen Perspective\",\"authors\":\"D. Biswas, Ipsita Rajwar\",\"doi\":\"10.52737/18291163-2024.16.1-1-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have investigated the projective action of the Lie group $\\\\text{SL}(3,\\\\mathbb{R})$ on the homogeneous space $\\\\mathbb{RP}^2$. In particular, we have studied the action of the subgroups of $\\\\text{SL}(3,\\\\mathbb{R})$ on the non-degenerate conics in the space $\\\\mathbb{RP}^2$. Using the Iwasawa decomposition of $\\\\text{SL}(2,\\\\mathbb{R})$, we demonstrate that the isotropy subgroup of the projective unit circle is isomorphic to $\\\\text{PSL}(2,\\\\mathbb{R})$ under certain conditions.\",\"PeriodicalId\":42323,\"journal\":{\"name\":\"Armenian Journal of Mathematics\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Armenian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52737/18291163-2024.16.1-1-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2024.16.1-1-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Geometry of the Projective Action of $\text{SL}(3,\mathbb{R})$ from the Erlangen Perspective
In this paper, we have investigated the projective action of the Lie group $\text{SL}(3,\mathbb{R})$ on the homogeneous space $\mathbb{RP}^2$. In particular, we have studied the action of the subgroups of $\text{SL}(3,\mathbb{R})$ on the non-degenerate conics in the space $\mathbb{RP}^2$. Using the Iwasawa decomposition of $\text{SL}(2,\mathbb{R})$, we demonstrate that the isotropy subgroup of the projective unit circle is isomorphic to $\text{PSL}(2,\mathbb{R})$ under certain conditions.