英伟达™(NVIDIA®)Grace 超级芯片针对高性能计算应用的早期评估

Fabio Banchelli, Joan Vinyals-Ylla-Catala, Josep Pocurull, Marc Clascà, Kilian Peiro, Filippo Spiga, M. Garcia-Gasulla, Filippo Mantovani
{"title":"英伟达™(NVIDIA®)Grace 超级芯片针对高性能计算应用的早期评估","authors":"Fabio Banchelli, Joan Vinyals-Ylla-Catala, Josep Pocurull, Marc Clascà, Kilian Peiro, Filippo Spiga, M. Garcia-Gasulla, Filippo Mantovani","doi":"10.1145/3636480.3637284","DOIUrl":null,"url":null,"abstract":"Arm-based system in HPC are a reality since more than a decade. However, when a new chip enters the market always implies challenges, not only at ISA level, but also with regards to the SoC integration, the memory subsystem, the board integration, the node interconnection, and finally the OS and all layers of the system software (compiler and libraries). Guided by the procurement of an NVIDIA Grace HPC cluster within the deployment of MareNostrum 5, and emulating the approach of a scientist who needs to migrate its scientific research to a new HPC system, we evaluated five complex scientific applications on engineering sample nodes of NVIDIA Grace CPU Superchip and NVIDIA Grace Hopper Superchip (CPU-only). We report intra-node and inter-node scalability and early performance results showing a speed-up between 1.3 × and 4.28 × for all codes when compared to the current generation of MareNostrum 4 powered by Intel Skylake CPUs.","PeriodicalId":120904,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops","volume":"5 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NVIDIA Grace Superchip Early Evaluation for HPC Applications\",\"authors\":\"Fabio Banchelli, Joan Vinyals-Ylla-Catala, Josep Pocurull, Marc Clascà, Kilian Peiro, Filippo Spiga, M. Garcia-Gasulla, Filippo Mantovani\",\"doi\":\"10.1145/3636480.3637284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arm-based system in HPC are a reality since more than a decade. However, when a new chip enters the market always implies challenges, not only at ISA level, but also with regards to the SoC integration, the memory subsystem, the board integration, the node interconnection, and finally the OS and all layers of the system software (compiler and libraries). Guided by the procurement of an NVIDIA Grace HPC cluster within the deployment of MareNostrum 5, and emulating the approach of a scientist who needs to migrate its scientific research to a new HPC system, we evaluated five complex scientific applications on engineering sample nodes of NVIDIA Grace CPU Superchip and NVIDIA Grace Hopper Superchip (CPU-only). We report intra-node and inter-node scalability and early performance results showing a speed-up between 1.3 × and 4.28 × for all codes when compared to the current generation of MareNostrum 4 powered by Intel Skylake CPUs.\",\"PeriodicalId\":120904,\"journal\":{\"name\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops\",\"volume\":\"5 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3636480.3637284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3636480.3637284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

十多年来,基于 Arm 的高性能计算系统已成为现实。然而,新芯片进入市场总是意味着挑战,不仅是在 ISA 层面,还涉及 SoC 集成、内存子系统、板卡集成、节点互连,以及操作系统和系统软件的所有层面(编译器和库)。在 MareNostrum 5 部署范围内采购英伟达™(NVIDIA®)Grace HPC 集群的指导下,并模拟科学家需要将其科学研究迁移到新 HPC 系统的方法,我们在英伟达™(NVIDIA®)Grace CPU 超级芯片和英伟达™(NVIDIA®)Grace Hopper 超级芯片(仅 CPU)的工程样本节点上评估了五个复杂的科学应用。我们报告了节点内和节点间的可扩展性以及早期性能结果,与采用英特尔Skylake CPU的新一代MareNostrum 4相比,所有代码的速度提高了1.3倍至4.28倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NVIDIA Grace Superchip Early Evaluation for HPC Applications
Arm-based system in HPC are a reality since more than a decade. However, when a new chip enters the market always implies challenges, not only at ISA level, but also with regards to the SoC integration, the memory subsystem, the board integration, the node interconnection, and finally the OS and all layers of the system software (compiler and libraries). Guided by the procurement of an NVIDIA Grace HPC cluster within the deployment of MareNostrum 5, and emulating the approach of a scientist who needs to migrate its scientific research to a new HPC system, we evaluated five complex scientific applications on engineering sample nodes of NVIDIA Grace CPU Superchip and NVIDIA Grace Hopper Superchip (CPU-only). We report intra-node and inter-node scalability and early performance results showing a speed-up between 1.3 × and 4.28 × for all codes when compared to the current generation of MareNostrum 4 powered by Intel Skylake CPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信