关于边界上有移动脉冲的反应扩散问题

IF 0.3 Q4 STATISTICS & PROBABILITY
Alioune Coulibaly
{"title":"关于边界上有移动脉冲的反应扩散问题","authors":"Alioune Coulibaly","doi":"10.1515/rose-2023-2023","DOIUrl":null,"url":null,"abstract":"Abstract We study an asymptotic problem of a semilinear partial differential equation (PDE) with Neumann boundary condition, periodic coefficients and highly oscillating drift and nonlinear terms. Our analysis focuses on the double limiting behavior of the PDE-solution perturbed by ε (viscosity parameter) and δ (scaling coefficient) both tending to zero. To do so, we state basic properties of the large deviations principle (LDP) and we express the logarithmic asymptotic of the PDE-solution. Particularly, we provide it for the case when ε converges more quickly than δ.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"10 19","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a reaction diffusion problem with a moving impulse on boundary\",\"authors\":\"Alioune Coulibaly\",\"doi\":\"10.1515/rose-2023-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study an asymptotic problem of a semilinear partial differential equation (PDE) with Neumann boundary condition, periodic coefficients and highly oscillating drift and nonlinear terms. Our analysis focuses on the double limiting behavior of the PDE-solution perturbed by ε (viscosity parameter) and δ (scaling coefficient) both tending to zero. To do so, we state basic properties of the large deviations principle (LDP) and we express the logarithmic asymptotic of the PDE-solution. Particularly, we provide it for the case when ε converges more quickly than δ.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"10 19\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了一个半线性偏微分方程(PDE)的渐近问题,该方程具有 Neumann 边界条件、周期系数以及高度振荡的漂移和非线性项。我们的分析重点是受到ε(粘度参数)和δ(缩放系数)扰动的 PDE 解的双重极限行为。为此,我们阐述了大偏差原理(LDP)的基本特性,并表达了 PDE 解的对数渐近线。特别是在 ε 比 δ 收敛得更快的情况下,我们提供了它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a reaction diffusion problem with a moving impulse on boundary
Abstract We study an asymptotic problem of a semilinear partial differential equation (PDE) with Neumann boundary condition, periodic coefficients and highly oscillating drift and nonlinear terms. Our analysis focuses on the double limiting behavior of the PDE-solution perturbed by ε (viscosity parameter) and δ (scaling coefficient) both tending to zero. To do so, we state basic properties of the large deviations principle (LDP) and we express the logarithmic asymptotic of the PDE-solution. Particularly, we provide it for the case when ε converges more quickly than δ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信