{"title":"关于边界上有移动脉冲的反应扩散问题","authors":"Alioune Coulibaly","doi":"10.1515/rose-2023-2023","DOIUrl":null,"url":null,"abstract":"Abstract We study an asymptotic problem of a semilinear partial differential equation (PDE) with Neumann boundary condition, periodic coefficients and highly oscillating drift and nonlinear terms. Our analysis focuses on the double limiting behavior of the PDE-solution perturbed by ε (viscosity parameter) and δ (scaling coefficient) both tending to zero. To do so, we state basic properties of the large deviations principle (LDP) and we express the logarithmic asymptotic of the PDE-solution. Particularly, we provide it for the case when ε converges more quickly than δ.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a reaction diffusion problem with a moving impulse on boundary\",\"authors\":\"Alioune Coulibaly\",\"doi\":\"10.1515/rose-2023-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study an asymptotic problem of a semilinear partial differential equation (PDE) with Neumann boundary condition, periodic coefficients and highly oscillating drift and nonlinear terms. Our analysis focuses on the double limiting behavior of the PDE-solution perturbed by ε (viscosity parameter) and δ (scaling coefficient) both tending to zero. To do so, we state basic properties of the large deviations principle (LDP) and we express the logarithmic asymptotic of the PDE-solution. Particularly, we provide it for the case when ε converges more quickly than δ.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On a reaction diffusion problem with a moving impulse on boundary
Abstract We study an asymptotic problem of a semilinear partial differential equation (PDE) with Neumann boundary condition, periodic coefficients and highly oscillating drift and nonlinear terms. Our analysis focuses on the double limiting behavior of the PDE-solution perturbed by ε (viscosity parameter) and δ (scaling coefficient) both tending to zero. To do so, we state basic properties of the large deviations principle (LDP) and we express the logarithmic asymptotic of the PDE-solution. Particularly, we provide it for the case when ε converges more quickly than δ.