边缘计算联合学习中的偏差缓解

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yasmine Djebrouni, Nawel Benarba, Ousmane Touat, Pasquale De Rosa, Sara Bouchenak, Angela Bonifati, Pascal Felber, Vania Marangozova, V. Schiavoni
{"title":"边缘计算联合学习中的偏差缓解","authors":"Yasmine Djebrouni, Nawel Benarba, Ousmane Touat, Pasquale De Rosa, Sara Bouchenak, Angela Bonifati, Pascal Felber, Vania Marangozova, V. Schiavoni","doi":"10.1145/3631455","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a distributed machine learning paradigm that enables data owners to collaborate on training models while preserving data privacy. As FL effectively leverages decentralized and sensitive data sources, it is increasingly used in ubiquitous computing including remote healthcare, activity recognition, and mobile applications. However, FL raises ethical and social concerns as it may introduce bias with regard to sensitive attributes such as race, gender, and location. Mitigating FL bias is thus a major research challenge. In this paper, we propose Astral, a novel bias mitigation system for FL. Astral provides a novel model aggregation approach to select the most effective aggregation weights to combine FL clients' models. It guarantees a predefined fairness objective by constraining bias below a given threshold while keeping model accuracy as high as possible. Astral handles the bias of single and multiple sensitive attributes and supports all bias metrics. Our comprehensive evaluation on seven real-world datasets with three popular bias metrics shows that Astral outperforms state-of-the-art FL bias mitigation techniques in terms of bias mitigation and model accuracy. Moreover, we show that Astral is robust against data heterogeneity and scalable in terms of data size and number of FL clients. Astral's code base is publicly available.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias Mitigation in Federated Learning for Edge Computing\",\"authors\":\"Yasmine Djebrouni, Nawel Benarba, Ousmane Touat, Pasquale De Rosa, Sara Bouchenak, Angela Bonifati, Pascal Felber, Vania Marangozova, V. Schiavoni\",\"doi\":\"10.1145/3631455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) is a distributed machine learning paradigm that enables data owners to collaborate on training models while preserving data privacy. As FL effectively leverages decentralized and sensitive data sources, it is increasingly used in ubiquitous computing including remote healthcare, activity recognition, and mobile applications. However, FL raises ethical and social concerns as it may introduce bias with regard to sensitive attributes such as race, gender, and location. Mitigating FL bias is thus a major research challenge. In this paper, we propose Astral, a novel bias mitigation system for FL. Astral provides a novel model aggregation approach to select the most effective aggregation weights to combine FL clients' models. It guarantees a predefined fairness objective by constraining bias below a given threshold while keeping model accuracy as high as possible. Astral handles the bias of single and multiple sensitive attributes and supports all bias metrics. Our comprehensive evaluation on seven real-world datasets with three popular bias metrics shows that Astral outperforms state-of-the-art FL bias mitigation techniques in terms of bias mitigation and model accuracy. Moreover, we show that Astral is robust against data heterogeneity and scalable in terms of data size and number of FL clients. Astral's code base is publicly available.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

联合学习(FL)是一种分布式机器学习范式,它能让数据所有者在保护数据隐私的同时合作训练模型。由于联合学习能有效利用分散和敏感的数据源,因此越来越多地应用于包括远程医疗、活动识别和移动应用在内的泛在计算领域。然而,FL 引发了伦理和社会问题,因为它可能会在种族、性别和位置等敏感属性方面产生偏差。因此,减少 FL 偏差是一项重大的研究挑战。在本文中,我们提出了针对 FL 的新型偏差缓解系统 Astral。Astral 提供了一种新颖的模型聚合方法,用于选择最有效的聚合权重来组合 FL 客户的模型。它通过将偏差限制在给定阈值以下,同时保持尽可能高的模型准确性,来保证预定义的公平性目标。Astral 可处理单个和多个敏感属性的偏差,并支持所有偏差指标。我们使用三种流行的偏差度量标准对七个真实数据集进行了全面评估,结果表明 Astral 在偏差缓解和模型准确性方面优于最先进的 FL 偏差缓解技术。此外,我们还证明了 Astral 对数据异构性的鲁棒性,以及在数据大小和 FL 客户端数量方面的可扩展性。Astral 的代码库是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias Mitigation in Federated Learning for Edge Computing
Federated learning (FL) is a distributed machine learning paradigm that enables data owners to collaborate on training models while preserving data privacy. As FL effectively leverages decentralized and sensitive data sources, it is increasingly used in ubiquitous computing including remote healthcare, activity recognition, and mobile applications. However, FL raises ethical and social concerns as it may introduce bias with regard to sensitive attributes such as race, gender, and location. Mitigating FL bias is thus a major research challenge. In this paper, we propose Astral, a novel bias mitigation system for FL. Astral provides a novel model aggregation approach to select the most effective aggregation weights to combine FL clients' models. It guarantees a predefined fairness objective by constraining bias below a given threshold while keeping model accuracy as high as possible. Astral handles the bias of single and multiple sensitive attributes and supports all bias metrics. Our comprehensive evaluation on seven real-world datasets with three popular bias metrics shows that Astral outperforms state-of-the-art FL bias mitigation techniques in terms of bias mitigation and model accuracy. Moreover, we show that Astral is robust against data heterogeneity and scalable in terms of data size and number of FL clients. Astral's code base is publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信