纹理视图

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xue Wang, Yang Zhang
{"title":"纹理视图","authors":"Xue Wang, Yang Zhang","doi":"10.1145/3631413","DOIUrl":null,"url":null,"abstract":"Objects engaged by users' hands contain rich contextual information for their strong correlation with user activities. Tools such as toothbrushes and wipes indicate cleansing and sanitation, while mice and keyboards imply work. Much research has been endeavored to sense hand-engaged objects to supply wearables with implicit interactions or ambient computing with personal informatics. We propose TextureSight, a smart-ring sensor that detects hand-engaged objects by detecting their distinctive surface textures using laser speckle imaging on a ring form factor. We conducted a two-day experience sampling study to investigate the unicity and repeatability of the object-texture combinations across routine objects. We grounded our sensing with a theoretical model and simulations, powered it with state-of-the-art deep neural net techniques, and evaluated it with a user study. TextureSight constitutes a valuable addition to the literature for its capability to sense passive objects without emission of EMI or vibration and its elimination of lens for preserving user privacy, leading to a new, practical method for activity recognition and context-aware computing.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TextureSight\",\"authors\":\"Xue Wang, Yang Zhang\",\"doi\":\"10.1145/3631413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objects engaged by users' hands contain rich contextual information for their strong correlation with user activities. Tools such as toothbrushes and wipes indicate cleansing and sanitation, while mice and keyboards imply work. Much research has been endeavored to sense hand-engaged objects to supply wearables with implicit interactions or ambient computing with personal informatics. We propose TextureSight, a smart-ring sensor that detects hand-engaged objects by detecting their distinctive surface textures using laser speckle imaging on a ring form factor. We conducted a two-day experience sampling study to investigate the unicity and repeatability of the object-texture combinations across routine objects. We grounded our sensing with a theoretical model and simulations, powered it with state-of-the-art deep neural net techniques, and evaluated it with a user study. TextureSight constitutes a valuable addition to the literature for its capability to sense passive objects without emission of EMI or vibration and its elimination of lens for preserving user privacy, leading to a new, practical method for activity recognition and context-aware computing.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

用户双手接触的物品包含丰富的上下文信息,因为它们与用户的活动密切相关。牙刷和湿巾等工具表示清洁和卫生,而鼠标和键盘则表示工作。很多研究都致力于感知手部接触的物体,从而为可穿戴设备提供隐式交互,或为环境计算提供个人信息学。我们提出了一种智能环形传感器--TextureSight,它可以通过环形激光斑点成像技术检测手接触物体的独特表面纹理。我们进行了为期两天的经验取样研究,以调查日常物体纹理组合的统一性和可重复性。我们以理论模型和模拟作为传感的基础,利用最先进的深度神经网络技术为其提供动力,并通过用户研究对其进行评估。TextureSight 能够在不产生电磁干扰或振动的情况下感知被动物体,并且消除了保护用户隐私的镜头,从而为活动识别和情境感知计算提供了一种全新的实用方法,是对文献的宝贵补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TextureSight
Objects engaged by users' hands contain rich contextual information for their strong correlation with user activities. Tools such as toothbrushes and wipes indicate cleansing and sanitation, while mice and keyboards imply work. Much research has been endeavored to sense hand-engaged objects to supply wearables with implicit interactions or ambient computing with personal informatics. We propose TextureSight, a smart-ring sensor that detects hand-engaged objects by detecting their distinctive surface textures using laser speckle imaging on a ring form factor. We conducted a two-day experience sampling study to investigate the unicity and repeatability of the object-texture combinations across routine objects. We grounded our sensing with a theoretical model and simulations, powered it with state-of-the-art deep neural net techniques, and evaluated it with a user study. TextureSight constitutes a valuable addition to the literature for its capability to sense passive objects without emission of EMI or vibration and its elimination of lens for preserving user privacy, leading to a new, practical method for activity recognition and context-aware computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信