对话本地化

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Smitha Sheshadri, Kotaro Hara
{"title":"对话本地化","authors":"Smitha Sheshadri, Kotaro Hara","doi":"10.1145/3631404","DOIUrl":null,"url":null,"abstract":"We propose a novel sensorless approach to indoor localization by leveraging natural language conversations with users, which we call conversational localization. To show the feasibility of conversational localization, we develop a proof-of-concept system that guides users to describe their surroundings in a chat and estimates their position based on the information they provide. We devised a modular architecture for our system with four modules. First, we construct an entity database with available image-based floor maps. Second, we enable the dynamic identification and scoring of information provided by users through our utterance processing module. Then, we implement a conversational agent that can intelligently strategize and guide the interaction to elicit localizationally valuable information from users. Finally, we employ visibility catchment area and line-of-sight heuristics to generate spatial estimates for the user's location. We conduct two user studies in designing and testing the system. We collect 800 natural language descriptions of unfamiliar indoor spaces in an online crowdsourcing study to learn the feasibility of extracting localizationally useful entities from user utterances. We then conduct a field study with 10 participants at 10 locations to evaluate the feasibility and performance of conversational localization. The results show that conversational localization can achieve within-10 meter localization accuracy at eight out of the ten study sites, showing the technique's utility for classes of indoor location-based services.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"11 7","pages":"1 - 32"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversational Localization\",\"authors\":\"Smitha Sheshadri, Kotaro Hara\",\"doi\":\"10.1145/3631404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel sensorless approach to indoor localization by leveraging natural language conversations with users, which we call conversational localization. To show the feasibility of conversational localization, we develop a proof-of-concept system that guides users to describe their surroundings in a chat and estimates their position based on the information they provide. We devised a modular architecture for our system with four modules. First, we construct an entity database with available image-based floor maps. Second, we enable the dynamic identification and scoring of information provided by users through our utterance processing module. Then, we implement a conversational agent that can intelligently strategize and guide the interaction to elicit localizationally valuable information from users. Finally, we employ visibility catchment area and line-of-sight heuristics to generate spatial estimates for the user's location. We conduct two user studies in designing and testing the system. We collect 800 natural language descriptions of unfamiliar indoor spaces in an online crowdsourcing study to learn the feasibility of extracting localizationally useful entities from user utterances. We then conduct a field study with 10 participants at 10 locations to evaluate the feasibility and performance of conversational localization. The results show that conversational localization can achieve within-10 meter localization accuracy at eight out of the ten study sites, showing the technique's utility for classes of indoor location-based services.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"11 7\",\"pages\":\"1 - 32\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种利用与用户的自然语言对话进行室内定位的新型无传感器方法,我们称之为对话定位。为了证明对话定位的可行性,我们开发了一个概念验证系统,引导用户在聊天中描述他们周围的环境,并根据他们提供的信息估计他们的位置。我们为系统设计了一个包含四个模块的模块化架构。首先,我们构建了一个实体数据库,其中包含可用的基于图像的楼层地图。其次,我们通过语句处理模块对用户提供的信息进行动态识别和评分。然后,我们实现了一个会话代理,它可以智能地制定策略并引导交互,从用户那里获取有本地化价值的信息。最后,我们采用能见度覆盖区和视线启发法来生成用户位置的空间估计值。我们在设计和测试系统时进行了两项用户研究。在一项在线众包研究中,我们收集了 800 条关于陌生室内空间的自然语言描述,以了解从用户话语中提取对定位有用的实体的可行性。然后,我们在 10 个地点对 10 名参与者进行了实地研究,以评估会话本地化的可行性和性能。研究结果表明,在 10 个研究地点中,有 8 个地点的会话定位可以达到 10 米以内的定位精度,这表明该技术适用于各类室内定位服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conversational Localization
We propose a novel sensorless approach to indoor localization by leveraging natural language conversations with users, which we call conversational localization. To show the feasibility of conversational localization, we develop a proof-of-concept system that guides users to describe their surroundings in a chat and estimates their position based on the information they provide. We devised a modular architecture for our system with four modules. First, we construct an entity database with available image-based floor maps. Second, we enable the dynamic identification and scoring of information provided by users through our utterance processing module. Then, we implement a conversational agent that can intelligently strategize and guide the interaction to elicit localizationally valuable information from users. Finally, we employ visibility catchment area and line-of-sight heuristics to generate spatial estimates for the user's location. We conduct two user studies in designing and testing the system. We collect 800 natural language descriptions of unfamiliar indoor spaces in an online crowdsourcing study to learn the feasibility of extracting localizationally useful entities from user utterances. We then conduct a field study with 10 participants at 10 locations to evaluate the feasibility and performance of conversational localization. The results show that conversational localization can achieve within-10 meter localization accuracy at eight out of the ten study sites, showing the technique's utility for classes of indoor location-based services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信