{"title":"淋巴细胞亚群识别的自动分析和质量保证方法","authors":"MinYang Zhang, YaLi Zhang, JingWen Zhang, JiaLi Zhang, SiYuan Gao, ZeChao Li, KangPei Tao, XiaoDan Liang, JianHua Pan, Min Zhu","doi":"10.1515/cclm-2023-1141","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Lymphocyte subsets are the predictors of disease diagnosis, treatment, and prognosis. Determination of lymphocyte subsets is usually carried out by flow cytometry. Despite recent advances in flow cytometry analysis, most flow cytometry data can be challenging with manual gating, which is labor-intensive, time-consuming, and error-prone. This study aimed to develop an automated method to identify lymphocyte subsets. Methods We propose a knowledge-driven combined with data-driven method which can gate automatically to achieve subset identification. To improve accuracy and stability, we have implemented a Loop Adjustment Gating to optimize the gating result of the lymphocyte population. Furthermore, we have incorporated an anomaly detection mechanism to issue warnings for samples that might not have been successfully analyzed, ensuring the quality of the results. Results The evaluation showed a 99.2 % correlation between our method results and manual analysis with a dataset of 2,000 individual cases from lymphocyte subset assays. Our proposed method attained 97.7 % accuracy for all cases and 100 % for the high-confidence cases. With our automated method, 99.1 % of manual labor can be saved when reviewing only the low-confidence cases, while the average turnaround time required is only 29 s, reducing by 83.7 %. Conclusions Our proposed method can achieve high accuracy in flow cytometry data from lymphocyte subset assays. Additionally, it can save manual labor and reduce the turnaround time, making it have the potential for application in the laboratory.","PeriodicalId":10388,"journal":{"name":"Clinical Chemistry and Laboratory Medicine (CCLM)","volume":"47 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automatic analysis and quality assurance method for lymphocyte subset identification\",\"authors\":\"MinYang Zhang, YaLi Zhang, JingWen Zhang, JiaLi Zhang, SiYuan Gao, ZeChao Li, KangPei Tao, XiaoDan Liang, JianHua Pan, Min Zhu\",\"doi\":\"10.1515/cclm-2023-1141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives Lymphocyte subsets are the predictors of disease diagnosis, treatment, and prognosis. Determination of lymphocyte subsets is usually carried out by flow cytometry. Despite recent advances in flow cytometry analysis, most flow cytometry data can be challenging with manual gating, which is labor-intensive, time-consuming, and error-prone. This study aimed to develop an automated method to identify lymphocyte subsets. Methods We propose a knowledge-driven combined with data-driven method which can gate automatically to achieve subset identification. To improve accuracy and stability, we have implemented a Loop Adjustment Gating to optimize the gating result of the lymphocyte population. Furthermore, we have incorporated an anomaly detection mechanism to issue warnings for samples that might not have been successfully analyzed, ensuring the quality of the results. Results The evaluation showed a 99.2 % correlation between our method results and manual analysis with a dataset of 2,000 individual cases from lymphocyte subset assays. Our proposed method attained 97.7 % accuracy for all cases and 100 % for the high-confidence cases. With our automated method, 99.1 % of manual labor can be saved when reviewing only the low-confidence cases, while the average turnaround time required is only 29 s, reducing by 83.7 %. Conclusions Our proposed method can achieve high accuracy in flow cytometry data from lymphocyte subset assays. Additionally, it can save manual labor and reduce the turnaround time, making it have the potential for application in the laboratory.\",\"PeriodicalId\":10388,\"journal\":{\"name\":\"Clinical Chemistry and Laboratory Medicine (CCLM)\",\"volume\":\"47 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Chemistry and Laboratory Medicine (CCLM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cclm-2023-1141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Chemistry and Laboratory Medicine (CCLM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cclm-2023-1141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An automatic analysis and quality assurance method for lymphocyte subset identification
Abstract Objectives Lymphocyte subsets are the predictors of disease diagnosis, treatment, and prognosis. Determination of lymphocyte subsets is usually carried out by flow cytometry. Despite recent advances in flow cytometry analysis, most flow cytometry data can be challenging with manual gating, which is labor-intensive, time-consuming, and error-prone. This study aimed to develop an automated method to identify lymphocyte subsets. Methods We propose a knowledge-driven combined with data-driven method which can gate automatically to achieve subset identification. To improve accuracy and stability, we have implemented a Loop Adjustment Gating to optimize the gating result of the lymphocyte population. Furthermore, we have incorporated an anomaly detection mechanism to issue warnings for samples that might not have been successfully analyzed, ensuring the quality of the results. Results The evaluation showed a 99.2 % correlation between our method results and manual analysis with a dataset of 2,000 individual cases from lymphocyte subset assays. Our proposed method attained 97.7 % accuracy for all cases and 100 % for the high-confidence cases. With our automated method, 99.1 % of manual labor can be saved when reviewing only the low-confidence cases, while the average turnaround time required is only 29 s, reducing by 83.7 %. Conclusions Our proposed method can achieve high accuracy in flow cytometry data from lymphocyte subset assays. Additionally, it can save manual labor and reduce the turnaround time, making it have the potential for application in the laboratory.