利用信号处理和基于深度学习的图像模式识别进行故障诊断

Zhenxing Ren, Jianfeng Guo
{"title":"利用信号处理和基于深度学习的图像模式识别进行故障诊断","authors":"Zhenxing Ren, Jianfeng Guo","doi":"10.1515/teme-2023-0089","DOIUrl":null,"url":null,"abstract":"Abstract The vibration signal is a typical non-stationary signal, making it challenging to use traditional time-frequency analysis techniques for fault diagnosis. Therefore, this work investigates the processing of vibration signals and proposes a deep learning method based on processed signals for the fault diagnosis of ball bearings. In this work, the fault diagnosis is formulated as an image classification problem and solved with deep learning networks. The intrinsic mode functions (IMFs), converted from the vibration signals in the time domain, are then transformed into symmetrized dot pattern (SDP) images. In order to increase classification accuracy, the SDP parameters in this study are chosen by optimizing image similarity. The feasibility and accuracy of the proposed approach are examined experimentally.","PeriodicalId":509687,"journal":{"name":"tm - Technisches Messen","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis using signal processing and deep learning-based image pattern recognition\",\"authors\":\"Zhenxing Ren, Jianfeng Guo\",\"doi\":\"10.1515/teme-2023-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The vibration signal is a typical non-stationary signal, making it challenging to use traditional time-frequency analysis techniques for fault diagnosis. Therefore, this work investigates the processing of vibration signals and proposes a deep learning method based on processed signals for the fault diagnosis of ball bearings. In this work, the fault diagnosis is formulated as an image classification problem and solved with deep learning networks. The intrinsic mode functions (IMFs), converted from the vibration signals in the time domain, are then transformed into symmetrized dot pattern (SDP) images. In order to increase classification accuracy, the SDP parameters in this study are chosen by optimizing image similarity. The feasibility and accuracy of the proposed approach are examined experimentally.\",\"PeriodicalId\":509687,\"journal\":{\"name\":\"tm - Technisches Messen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"tm - Technisches Messen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/teme-2023-0089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"tm - Technisches Messen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/teme-2023-0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 振动信号是一种典型的非稳态信号,因此使用传统的时频分析技术进行故障诊断具有挑战性。因此,本研究对振动信号进行了处理,并提出了一种基于处理后信号的深度学习方法,用于滚珠轴承的故障诊断。在这项工作中,故障诊断被表述为一个图像分类问题,并通过深度学习网络加以解决。从时域振动信号转换而来的本征模态函数(IMF)被转化为对称点模式(SDP)图像。为了提高分类准确性,本研究通过优化图像相似性来选择 SDP 参数。实验检验了建议方法的可行性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault diagnosis using signal processing and deep learning-based image pattern recognition
Abstract The vibration signal is a typical non-stationary signal, making it challenging to use traditional time-frequency analysis techniques for fault diagnosis. Therefore, this work investigates the processing of vibration signals and proposes a deep learning method based on processed signals for the fault diagnosis of ball bearings. In this work, the fault diagnosis is formulated as an image classification problem and solved with deep learning networks. The intrinsic mode functions (IMFs), converted from the vibration signals in the time domain, are then transformed into symmetrized dot pattern (SDP) images. In order to increase classification accuracy, the SDP parameters in this study are chosen by optimizing image similarity. The feasibility and accuracy of the proposed approach are examined experimentally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信