Annisa Rizky Kusuma, C. Pratama, N. Widjajanti, Yulaikhah, Oktadi Prayoga, Evi Dwi Kurniasari
{"title":"基于insar揭示的多机制长时后滑动的2018年龙目岛地震时空后震","authors":"Annisa Rizky Kusuma, C. Pratama, N. Widjajanti, Yulaikhah, Oktadi Prayoga, Evi Dwi Kurniasari","doi":"10.1515/jag-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract The Lombok earthquake in August 2018 triggered a sequential rupture with doublet earthquake up to Mw 6.9. This tectonic activity occurred near the main earthquake due to the decay of residual energy from one event to another. This activity is suspected to be a post-seismic deformation process such as afterslip and viscoelastic. In this paper, we conducted a study to determine the deformation pattern. Each of these processes can be investigated by extracting InSAR observational data. Time series from Sentinel-1 SAR is processed using LiCSBAS as data observation and then compare with the model based on exponential and logarithmic functions. The results of combined logarithmic and exponential fitting suggest the Lombok multi-event earthquakes were influenced by seismic activity from dual-releasing residual energy comprises of afterslip and viscoelastic as a dual mechanism with long duration rather than single mechanism.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":"38 11","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal postseismic due to the 2018 Lombok earthquake based on insar revealed multi mechanisms with long duration afterslip\",\"authors\":\"Annisa Rizky Kusuma, C. Pratama, N. Widjajanti, Yulaikhah, Oktadi Prayoga, Evi Dwi Kurniasari\",\"doi\":\"10.1515/jag-2022-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Lombok earthquake in August 2018 triggered a sequential rupture with doublet earthquake up to Mw 6.9. This tectonic activity occurred near the main earthquake due to the decay of residual energy from one event to another. This activity is suspected to be a post-seismic deformation process such as afterslip and viscoelastic. In this paper, we conducted a study to determine the deformation pattern. Each of these processes can be investigated by extracting InSAR observational data. Time series from Sentinel-1 SAR is processed using LiCSBAS as data observation and then compare with the model based on exponential and logarithmic functions. The results of combined logarithmic and exponential fitting suggest the Lombok multi-event earthquakes were influenced by seismic activity from dual-releasing residual energy comprises of afterslip and viscoelastic as a dual mechanism with long duration rather than single mechanism.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":\"38 11\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2022-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2022-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Spatiotemporal postseismic due to the 2018 Lombok earthquake based on insar revealed multi mechanisms with long duration afterslip
Abstract The Lombok earthquake in August 2018 triggered a sequential rupture with doublet earthquake up to Mw 6.9. This tectonic activity occurred near the main earthquake due to the decay of residual energy from one event to another. This activity is suspected to be a post-seismic deformation process such as afterslip and viscoelastic. In this paper, we conducted a study to determine the deformation pattern. Each of these processes can be investigated by extracting InSAR observational data. Time series from Sentinel-1 SAR is processed using LiCSBAS as data observation and then compare with the model based on exponential and logarithmic functions. The results of combined logarithmic and exponential fitting suggest the Lombok multi-event earthquakes were influenced by seismic activity from dual-releasing residual energy comprises of afterslip and viscoelastic as a dual mechanism with long duration rather than single mechanism.