{"title":"全球加密货币和传统资产类别的共波动动态:多变量随机因素波动方法","authors":"Shalini Velappan","doi":"10.1108/sef-06-2023-0339","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to investigate the co-volatility patterns between cryptocurrencies and conventional asset classes across global markets, encompassing 26 global indices ranging from equities, commodities, real estate, currencies and bonds.\n\n\nDesign/methodology/approach\nIt used a multivariate factor stochastic volatility model to capture the dynamic changes in covariance and volatility correlation, thus offering empirical insights into the co-volatility dynamics. Unlike conventional research on price or return transmission, this study directly models the time-varying covariance and volatility correlation.\n\n\nFindings\nThe study uncovers pronounced co-volatility movements between cryptocurrencies and specific indices such as GSCI Energy, GSCI Commodity, Dow Jones 1 month forward and U.S. 10-year TIPS. Notably, these movements surpass those observed with precious metals, industrial metals and global equity indices across various regions. Interestingly, except for Japan, equity indices in the USA, Canada, Australia, France, Germany, India and China exhibit a co-volatility movement. These findings challenge the existing literature on cryptocurrencies and provide intriguing evidence regarding their co-volatility dynamics.\n\n\nOriginality\nThis study significantly contributes to applying asset pricing models in cryptocurrency markets by explicitly addressing price and volatility dynamics aspects. Using the stochastic volatility model, the research adding methodological contribution effectively captures cryptocurrency volatility's inherent fluctuations and time-varying nature. While previous literature has primarily focused on bitcoin and a few other cryptocurrencies, this study examines the stochastic volatility properties of a wide range of cryptocurrency indices. Furthermore, the study expands its scope by examining global asset markets, allowing for a comprehensive analysis considering the broader context in which cryptocurrencies operate. It bridges the gap between traditional asset pricing models and the unique characteristics of cryptocurrencies.\n","PeriodicalId":45607,"journal":{"name":"Studies in Economics and Finance","volume":"54 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-volatility dynamics in global cryptocurrency and conventional asset classes: a multivariate stochastic factor volatility approach\",\"authors\":\"Shalini Velappan\",\"doi\":\"10.1108/sef-06-2023-0339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis study aims to investigate the co-volatility patterns between cryptocurrencies and conventional asset classes across global markets, encompassing 26 global indices ranging from equities, commodities, real estate, currencies and bonds.\\n\\n\\nDesign/methodology/approach\\nIt used a multivariate factor stochastic volatility model to capture the dynamic changes in covariance and volatility correlation, thus offering empirical insights into the co-volatility dynamics. Unlike conventional research on price or return transmission, this study directly models the time-varying covariance and volatility correlation.\\n\\n\\nFindings\\nThe study uncovers pronounced co-volatility movements between cryptocurrencies and specific indices such as GSCI Energy, GSCI Commodity, Dow Jones 1 month forward and U.S. 10-year TIPS. Notably, these movements surpass those observed with precious metals, industrial metals and global equity indices across various regions. Interestingly, except for Japan, equity indices in the USA, Canada, Australia, France, Germany, India and China exhibit a co-volatility movement. These findings challenge the existing literature on cryptocurrencies and provide intriguing evidence regarding their co-volatility dynamics.\\n\\n\\nOriginality\\nThis study significantly contributes to applying asset pricing models in cryptocurrency markets by explicitly addressing price and volatility dynamics aspects. Using the stochastic volatility model, the research adding methodological contribution effectively captures cryptocurrency volatility's inherent fluctuations and time-varying nature. While previous literature has primarily focused on bitcoin and a few other cryptocurrencies, this study examines the stochastic volatility properties of a wide range of cryptocurrency indices. Furthermore, the study expands its scope by examining global asset markets, allowing for a comprehensive analysis considering the broader context in which cryptocurrencies operate. It bridges the gap between traditional asset pricing models and the unique characteristics of cryptocurrencies.\\n\",\"PeriodicalId\":45607,\"journal\":{\"name\":\"Studies in Economics and Finance\",\"volume\":\"54 7\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Economics and Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/sef-06-2023-0339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sef-06-2023-0339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Co-volatility dynamics in global cryptocurrency and conventional asset classes: a multivariate stochastic factor volatility approach
Purpose
This study aims to investigate the co-volatility patterns between cryptocurrencies and conventional asset classes across global markets, encompassing 26 global indices ranging from equities, commodities, real estate, currencies and bonds.
Design/methodology/approach
It used a multivariate factor stochastic volatility model to capture the dynamic changes in covariance and volatility correlation, thus offering empirical insights into the co-volatility dynamics. Unlike conventional research on price or return transmission, this study directly models the time-varying covariance and volatility correlation.
Findings
The study uncovers pronounced co-volatility movements between cryptocurrencies and specific indices such as GSCI Energy, GSCI Commodity, Dow Jones 1 month forward and U.S. 10-year TIPS. Notably, these movements surpass those observed with precious metals, industrial metals and global equity indices across various regions. Interestingly, except for Japan, equity indices in the USA, Canada, Australia, France, Germany, India and China exhibit a co-volatility movement. These findings challenge the existing literature on cryptocurrencies and provide intriguing evidence regarding their co-volatility dynamics.
Originality
This study significantly contributes to applying asset pricing models in cryptocurrency markets by explicitly addressing price and volatility dynamics aspects. Using the stochastic volatility model, the research adding methodological contribution effectively captures cryptocurrency volatility's inherent fluctuations and time-varying nature. While previous literature has primarily focused on bitcoin and a few other cryptocurrencies, this study examines the stochastic volatility properties of a wide range of cryptocurrency indices. Furthermore, the study expands its scope by examining global asset markets, allowing for a comprehensive analysis considering the broader context in which cryptocurrencies operate. It bridges the gap between traditional asset pricing models and the unique characteristics of cryptocurrencies.
期刊介绍:
Topics addressed in the journal include: ■corporate finance, ■financial markets, ■money and banking, ■international finance and economics, ■investments, ■risk management, ■theory of the firm, ■competition policy, ■corporate governance.