对称正定矩阵小波曲线估计器的统计推理

Pub Date : 2024-01-09 DOI:10.1016/j.jspi.2023.106140
Daniel Rademacher , Johannes Krebs , Rainer von Sachs
{"title":"对称正定矩阵小波曲线估计器的统计推理","authors":"Daniel Rademacher ,&nbsp;Johannes Krebs ,&nbsp;Rainer von Sachs","doi":"10.1016/j.jspi.2023.106140","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper we treat statistical inference<span> for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation (AI) and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the </span></span>proposition<span> of confidence sets for our AI wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality<span> of this estimator, including explicit expressions of its asymptotic variance<span>. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes.</span></span></span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inference for wavelet curve estimators of symmetric positive definite matrices\",\"authors\":\"Daniel Rademacher ,&nbsp;Johannes Krebs ,&nbsp;Rainer von Sachs\",\"doi\":\"10.1016/j.jspi.2023.106140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper we treat statistical inference<span> for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation (AI) and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the </span></span>proposition<span> of confidence sets for our AI wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality<span> of this estimator, including explicit expressions of its asymptotic variance<span>. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes.</span></span></span></p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037837582300109X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837582300109X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用对数欧氏距离对对称正定(SPD)曲线的小波估计器进行统计推断。该估计器保留了正定性并具有包换方差性,这与协方差矩阵尤其相关。我们的第二代小波估计器基于平均插值(AI),具有与标准欧几里得设置中的小波非参数曲线估计器相同的强大特性,包括快速算法。我们工作的核心是为非欧几里得几何中的 AI 小波估计器提出置信集。我们推导出该估计器的渐近正态性,包括其渐近方差的明确表达式。这为我们构建渐近置信区域打开了大门,我们将这些置信区域与我们提出的引导推理方案进行比较。详细的数值模拟证实了我们建议的推理方案的适当性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Statistical inference for wavelet curve estimators of symmetric positive definite matrices

In this paper we treat statistical inference for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation (AI) and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the proposition of confidence sets for our AI wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality of this estimator, including explicit expressions of its asymptotic variance. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信