活性氧在紫外线引起的皮肤光损伤中的作用。

IF 2.8 4区 生物学 Q3 CELL BIOLOGY
Min Wei, Xin He, Na Liu, Hui Deng
{"title":"活性氧在紫外线引起的皮肤光损伤中的作用。","authors":"Min Wei, Xin He, Na Liu, Hui Deng","doi":"10.1186/s13008-024-00107-z","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species (ROS), such as superoxides (O<sub>2</sub> •-) and hydroxyl groups (OH·), are short-lived molecules containing unpaired electrons. Intracellular ROS are believed to be mainly produced by the mitochondria and NADPH oxidase (NOX) and can be associated with various physiological processes, such as proliferation, cell signaling, and oxygen homeostasis. In recent years, many studies have indicated that ROS play crucial roles in regulating ultraviolet (UV)-induced photodamage of the skin, including exogenous aging, which accounts for 80% of aging. However, to the best of our knowledge, the detailed signaling pathways, especially those related to the mechanisms underlying apoptosis in which ROS are involved have not been reviewed previously. In this review, we elaborate on the biological characteristics of ROS and its role in regulating UV-induced photodamage of the skin.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"19 1","pages":"1"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of reactive oxygen species in ultraviolet-induced photodamage of the skin.\",\"authors\":\"Min Wei, Xin He, Na Liu, Hui Deng\",\"doi\":\"10.1186/s13008-024-00107-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reactive oxygen species (ROS), such as superoxides (O<sub>2</sub> •-) and hydroxyl groups (OH·), are short-lived molecules containing unpaired electrons. Intracellular ROS are believed to be mainly produced by the mitochondria and NADPH oxidase (NOX) and can be associated with various physiological processes, such as proliferation, cell signaling, and oxygen homeostasis. In recent years, many studies have indicated that ROS play crucial roles in regulating ultraviolet (UV)-induced photodamage of the skin, including exogenous aging, which accounts for 80% of aging. However, to the best of our knowledge, the detailed signaling pathways, especially those related to the mechanisms underlying apoptosis in which ROS are involved have not been reviewed previously. In this review, we elaborate on the biological characteristics of ROS and its role in regulating UV-induced photodamage of the skin.</p>\",\"PeriodicalId\":49263,\"journal\":{\"name\":\"Cell Division\",\"volume\":\"19 1\",\"pages\":\"1\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Division\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13008-024-00107-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Division","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13008-024-00107-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

活性氧(ROS),如过氧化物(O2-)和羟基(OH-),是含有未配对电子的短寿命分子。细胞内的 ROS 被认为主要由线粒体和 NADPH 氧化酶(NOX)产生,与增殖、细胞信号传导和氧平衡等各种生理过程有关。近年来,许多研究表明,ROS 在调节紫外线(UV)诱导的皮肤光损伤(包括占衰老 80% 的外源性衰老)中发挥着至关重要的作用。然而,据我们所知,详细的信号传导途径,尤其是那些与 ROS 所涉及的细胞凋亡机制有关的途径,以前还没有进行过综述。在这篇综述中,我们将详细阐述 ROS 的生物学特性及其在调节紫外线引起的皮肤光损伤中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of reactive oxygen species in ultraviolet-induced photodamage of the skin.

Reactive oxygen species (ROS), such as superoxides (O2 •-) and hydroxyl groups (OH·), are short-lived molecules containing unpaired electrons. Intracellular ROS are believed to be mainly produced by the mitochondria and NADPH oxidase (NOX) and can be associated with various physiological processes, such as proliferation, cell signaling, and oxygen homeostasis. In recent years, many studies have indicated that ROS play crucial roles in regulating ultraviolet (UV)-induced photodamage of the skin, including exogenous aging, which accounts for 80% of aging. However, to the best of our knowledge, the detailed signaling pathways, especially those related to the mechanisms underlying apoptosis in which ROS are involved have not been reviewed previously. In this review, we elaborate on the biological characteristics of ROS and its role in regulating UV-induced photodamage of the skin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Division
Cell Division CELL BIOLOGY-
CiteScore
3.70
自引率
0.00%
发文量
5
审稿时长
>12 weeks
期刊介绍: Cell Division is an open access, peer-reviewed journal that encompasses all the molecular aspects of cell cycle control and cancer, cell growth, proliferation, survival, differentiation, signalling, gene transcription, protein synthesis, genome integrity, chromosome stability, centrosome duplication, DNA damage and DNA repair. Cell Division provides an online forum for the cell-cycle community that aims to publish articles on all exciting aspects of cell-cycle research and to bridge the gap between models of cell cycle regulation, development, and cancer biology. This forum is driven by specialized and timely research articles, reviews and commentaries focused on this fast moving field, providing an invaluable tool for cell-cycle biologists. Cell Division publishes articles in areas which includes, but not limited to: DNA replication, cell fate decisions, cell cycle & development Cell proliferation, mitosis, spindle assembly checkpoint, ubiquitin mediated degradation DNA damage & repair Apoptosis & cell death
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信