{"title":"合成孔径雷达图像分辨率、波长和土地覆盖类型对持久散射体特征的影响","authors":"Yahui Chong, Qiming Zeng, Jiang Long","doi":"10.1007/s41064-023-00266-8","DOIUrl":null,"url":null,"abstract":"<p>Persistent Scatterers (PS) are points selected by Persistent Scatterer for Synthetic Aperture Radar Interferometry (PS-InSAR) technology. PS density and quality determine the accuracy of deformation monitoring results. A comprehension of PS and its influencing factors could provide suggestions for data selection and parameter setting in the time series of InSAR, and it can also provide the decision basis for radar satellite engineers to select imaging modes for different application requirements. PS characteristics are mainly affected by SAR image resolution, wavelength and land cover type, etc. However, these influencing factors are coupled together, so it is difficult to study the relationship between the single factor and PS characteristics. Therefore, this paper adopted the Split-Spectrum to TerraSAR datasets to construct a series of simulated SAR datasets with different resolutions while keeping the other imaging parameters the same. We found that the PS density presents a declining linear trend as the bandwidth (resolution) decreases, while the deformation patterns of PS obtained from different bandwidth datasets are consistent. In addition, we proposed a simplified model to estimate the PS density obtained from 1/<i>k</i> bandwidth datasets. Then, we compared the PS results obtained from X-band TerraSAR datasets and C-band Sentinel-1A datasets and analyzed the reason for the difference from the perspective of spatiotemporal decorrelation. Finally, combined with the land cover map and Bayesian estimation, we obtained the distribution probability of PS on land cover types.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of SAR Image Resolution, Wavelength and Land Cover Type on Characteristics of Persistent Scatterer\",\"authors\":\"Yahui Chong, Qiming Zeng, Jiang Long\",\"doi\":\"10.1007/s41064-023-00266-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Persistent Scatterers (PS) are points selected by Persistent Scatterer for Synthetic Aperture Radar Interferometry (PS-InSAR) technology. PS density and quality determine the accuracy of deformation monitoring results. A comprehension of PS and its influencing factors could provide suggestions for data selection and parameter setting in the time series of InSAR, and it can also provide the decision basis for radar satellite engineers to select imaging modes for different application requirements. PS characteristics are mainly affected by SAR image resolution, wavelength and land cover type, etc. However, these influencing factors are coupled together, so it is difficult to study the relationship between the single factor and PS characteristics. Therefore, this paper adopted the Split-Spectrum to TerraSAR datasets to construct a series of simulated SAR datasets with different resolutions while keeping the other imaging parameters the same. We found that the PS density presents a declining linear trend as the bandwidth (resolution) decreases, while the deformation patterns of PS obtained from different bandwidth datasets are consistent. In addition, we proposed a simplified model to estimate the PS density obtained from 1/<i>k</i> bandwidth datasets. Then, we compared the PS results obtained from X-band TerraSAR datasets and C-band Sentinel-1A datasets and analyzed the reason for the difference from the perspective of spatiotemporal decorrelation. Finally, combined with the land cover map and Bayesian estimation, we obtained the distribution probability of PS on land cover types.</p>\",\"PeriodicalId\":56035,\"journal\":{\"name\":\"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s41064-023-00266-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s41064-023-00266-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
持久散射体(PS)是通过合成孔径雷达干涉测量(PS-InSAR)技术选择的点。持久散射体的密度和质量决定了形变监测结果的准确性。了解 PS 及其影响因素可为 InSAR 时间序列的数据选择和参数设置提供建议,也可为雷达卫星工程师针对不同应用需求选择成像模式提供决策依据。PS 特性主要受 SAR 图像分辨率、波长和土地覆被类型等因素的影响。然而,这些影响因素是耦合在一起的,因此很难研究单一因素与 PS 特性之间的关系。因此,本文在保持其他成像参数不变的情况下,对 TerraSAR 数据集采用 Split-Spectrum 方法,构建了一系列不同分辨率的模拟 SAR 数据集。我们发现,随着带宽(分辨率)的降低,PS 密度呈线性下降趋势,而不同带宽数据集得到的 PS 变形模式是一致的。此外,我们还提出了一个简化模型来估算从 1/k 带宽数据集获得的 PS 密度。然后,比较了 X 波段 TerraSAR 数据集和 C 波段 Sentinel-1A 数据集的 PS 结果,并从时空相关性的角度分析了差异的原因。最后,结合土地覆被图和贝叶斯估算,得到了 PS 在土地覆被类型上的分布概率。
The Influence of SAR Image Resolution, Wavelength and Land Cover Type on Characteristics of Persistent Scatterer
Persistent Scatterers (PS) are points selected by Persistent Scatterer for Synthetic Aperture Radar Interferometry (PS-InSAR) technology. PS density and quality determine the accuracy of deformation monitoring results. A comprehension of PS and its influencing factors could provide suggestions for data selection and parameter setting in the time series of InSAR, and it can also provide the decision basis for radar satellite engineers to select imaging modes for different application requirements. PS characteristics are mainly affected by SAR image resolution, wavelength and land cover type, etc. However, these influencing factors are coupled together, so it is difficult to study the relationship between the single factor and PS characteristics. Therefore, this paper adopted the Split-Spectrum to TerraSAR datasets to construct a series of simulated SAR datasets with different resolutions while keeping the other imaging parameters the same. We found that the PS density presents a declining linear trend as the bandwidth (resolution) decreases, while the deformation patterns of PS obtained from different bandwidth datasets are consistent. In addition, we proposed a simplified model to estimate the PS density obtained from 1/k bandwidth datasets. Then, we compared the PS results obtained from X-band TerraSAR datasets and C-band Sentinel-1A datasets and analyzed the reason for the difference from the perspective of spatiotemporal decorrelation. Finally, combined with the land cover map and Bayesian estimation, we obtained the distribution probability of PS on land cover types.
期刊介绍:
PFG is an international scholarly journal covering the progress and application of photogrammetric methods, remote sensing technology and the interconnected field of geoinformation science. It places special editorial emphasis on the communication of new methodologies in data acquisition and new approaches to optimized processing and interpretation of all types of data which were acquired by photogrammetric methods, remote sensing, image processing and the computer-aided interpretation of such data in general. The journal hence addresses both researchers and students of these disciplines at academic institutions and universities as well as the downstream users in both the private sector and public administration.
Founded in 1926 under the former name Bildmessung und Luftbildwesen, PFG is worldwide the oldest journal on photogrammetry. It is the official journal of the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF).