质中质晶格中波列的分支模式

IF 1.3 3区 数学 Q1 MATHEMATICS
Ling Zhang, Shangjiang Guo
{"title":"质中质晶格中波列的分支模式","authors":"Ling Zhang, Shangjiang Guo","doi":"10.1017/prm.2023.130","DOIUrl":null,"url":null,"abstract":"<p>We investigate the existence and branching patterns of wave trains in the mass-in-mass (MiM) lattice, which is a variant of the Fermi–Pasta–Ulam (FPU) lattice. In contrast to FPU lattice, we have to solve coupled advance-delay differential equations, which are reduced to a finite-dimensional bifurcation equation with an inherited Hamiltonian structure by applying a Lyapunov–Schmidt reduction and invariant theory. We establish a link between the MiM lattice and the monatomic FPU lattice. That is, the monochromatic and bichromatic wave trains persist near <span><span><span data-mathjax-type=\"texmath\"><span>$\\mu =0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline1.png\"/></span></span> in the nonresonance case and in the resonance case <span><span><span data-mathjax-type=\"texmath\"><span>$p:q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline2.png\"/></span></span> where <span><span><span data-mathjax-type=\"texmath\"><span>$q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline3.png\"/></span></span> is not an integer multiple of <span><span><span data-mathjax-type=\"texmath\"><span>$p$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline4.png\"/></span></span>. Furthermore, we obtain the multiplicity of bichromatic wave trains in <span><span><span data-mathjax-type=\"texmath\"><span>$p:q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline5.png\"/></span></span> resonance where <span><span><span data-mathjax-type=\"texmath\"><span>$q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline6.png\"/></span></span> is an integer multiple of <span><span><span data-mathjax-type=\"texmath\"><span>$p$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline7.png\"/></span></span>, based on the singular theorem.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branching patterns of wave trains in mass-in-mass lattices\",\"authors\":\"Ling Zhang, Shangjiang Guo\",\"doi\":\"10.1017/prm.2023.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the existence and branching patterns of wave trains in the mass-in-mass (MiM) lattice, which is a variant of the Fermi–Pasta–Ulam (FPU) lattice. In contrast to FPU lattice, we have to solve coupled advance-delay differential equations, which are reduced to a finite-dimensional bifurcation equation with an inherited Hamiltonian structure by applying a Lyapunov–Schmidt reduction and invariant theory. We establish a link between the MiM lattice and the monatomic FPU lattice. That is, the monochromatic and bichromatic wave trains persist near <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mu =0$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline1.png\\\"/></span></span> in the nonresonance case and in the resonance case <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$p:q$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline2.png\\\"/></span></span> where <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$q$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline3.png\\\"/></span></span> is not an integer multiple of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline4.png\\\"/></span></span>. Furthermore, we obtain the multiplicity of bichromatic wave trains in <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$p:q$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline5.png\\\"/></span></span> resonance where <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$q$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline6.png\\\"/></span></span> is an integer multiple of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline7.png\\\"/></span></span>, based on the singular theorem.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2023.130\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.130","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了质中质(MiM)晶格中波列的存在和分支模式,它是费米-帕斯塔-乌兰(FPU)晶格的一种变体。与 FPU 晶格不同的是,我们必须求解耦合超前延迟微分方程,通过应用 Lyapunov-Schmidt 简化和不变理论,将其简化为具有继承哈密顿结构的有限维分岔方程。我们在 MiM 晶格和单原子 FPU 晶格之间建立了联系。也就是说,在非共振情况和共振情况 $p:q$ (其中 $q$ 不是 $p$ 的整数倍)下,单色和双色波列在 $\mu =0$ 附近持续存在。此外,我们还根据奇异定理得到了在 $q$ 是 $p$ 整数倍的 $p:q$ 共振情况下的双色波列的多重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Branching patterns of wave trains in mass-in-mass lattices

We investigate the existence and branching patterns of wave trains in the mass-in-mass (MiM) lattice, which is a variant of the Fermi–Pasta–Ulam (FPU) lattice. In contrast to FPU lattice, we have to solve coupled advance-delay differential equations, which are reduced to a finite-dimensional bifurcation equation with an inherited Hamiltonian structure by applying a Lyapunov–Schmidt reduction and invariant theory. We establish a link between the MiM lattice and the monatomic FPU lattice. That is, the monochromatic and bichromatic wave trains persist near $\mu =0$ in the nonresonance case and in the resonance case $p:q$ where $q$ is not an integer multiple of $p$. Furthermore, we obtain the multiplicity of bichromatic wave trains in $p:q$ resonance where $q$ is an integer multiple of $p$, based on the singular theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信