扎哈罗夫-沙巴特系统的左右反向散射问题公式

IF 0.9 4区 数学 Q2 MATHEMATICS
Alexander E. Chernyavsky, Leonid L. Frumin, Andrey A. Gelash
{"title":"扎哈罗夫-沙巴特系统的左右反向散射问题公式","authors":"Alexander E. Chernyavsky, Leonid L. Frumin, Andrey A. Gelash","doi":"10.1515/jiip-2022-0087","DOIUrl":null,"url":null,"abstract":"We consider right and left formulations of the inverse scattering problem for the Zakharov–Shabat system and the corresponding integral Gelfand–Levitan–Marchenko equations. Both formulations are helpful for numerical solving of the inverse scattering problem, which we perform using the previously developed Toeplitz Inner Bordering (TIB) algorithm. First, we establish general relations between the right and left scattering coefficients. Then we propose an auxiliary kernel of the left Gelfand–Levitan–Marchenko equations, which allows one to solve the right scattering problem numerically. We generalize the TIB algorithm, initially proposed in the left formulation, to the right scattering problem case with the obtained formulas. The test runs of the TIB algorithm illustrate our results reconstructing the various non-symmetrical potentials from their right scattering data.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"53 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Right and left inverse scattering problems formulations for the Zakharov–Shabat system\",\"authors\":\"Alexander E. Chernyavsky, Leonid L. Frumin, Andrey A. Gelash\",\"doi\":\"10.1515/jiip-2022-0087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider right and left formulations of the inverse scattering problem for the Zakharov–Shabat system and the corresponding integral Gelfand–Levitan–Marchenko equations. Both formulations are helpful for numerical solving of the inverse scattering problem, which we perform using the previously developed Toeplitz Inner Bordering (TIB) algorithm. First, we establish general relations between the right and left scattering coefficients. Then we propose an auxiliary kernel of the left Gelfand–Levitan–Marchenko equations, which allows one to solve the right scattering problem numerically. We generalize the TIB algorithm, initially proposed in the left formulation, to the right scattering problem case with the obtained formulas. The test runs of the TIB algorithm illustrate our results reconstructing the various non-symmetrical potentials from their right scattering data.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2022-0087\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2022-0087","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了 Zakharov-Shabat 系统的反向散射问题的右式和左式公式以及相应的积分 Gelfand-Levitan-Marchenko 方程。这两种公式都有助于逆散射问题的数值求解,我们使用之前开发的托普利兹内边界(TIB)算法进行求解。首先,我们建立了左右散射系数之间的一般关系。然后,我们提出了左侧格尔芬-列维坦-马琴科方程的辅助核,从而可以数值求解右侧散射问题。我们将最初在左公式中提出的 TIB 算法推广到右散射问题中,并使用所获得的公式。TIB 算法的测试运行说明了我们从右散射数据重建各种非对称势的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Right and left inverse scattering problems formulations for the Zakharov–Shabat system
We consider right and left formulations of the inverse scattering problem for the Zakharov–Shabat system and the corresponding integral Gelfand–Levitan–Marchenko equations. Both formulations are helpful for numerical solving of the inverse scattering problem, which we perform using the previously developed Toeplitz Inner Bordering (TIB) algorithm. First, we establish general relations between the right and left scattering coefficients. Then we propose an auxiliary kernel of the left Gelfand–Levitan–Marchenko equations, which allows one to solve the right scattering problem numerically. We generalize the TIB algorithm, initially proposed in the left formulation, to the right scattering problem case with the obtained formulas. The test runs of the TIB algorithm illustrate our results reconstructing the various non-symmetrical potentials from their right scattering data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信