振幅受限泊松信道容量实现输入支持点数量的改进边界

Luca BarlettaShitz, Alex DytsoShitz, Shlomo ShamaiShitz
{"title":"振幅受限泊松信道容量实现输入支持点数量的改进边界","authors":"Luca BarlettaShitz, Alex DytsoShitz, Shlomo ShamaiShitz","doi":"arxiv-2401.05045","DOIUrl":null,"url":null,"abstract":"This work considers a discrete-time Poisson noise channel with an input\namplitude constraint $\\mathsf{A}$ and a dark current parameter $\\lambda$. It is\nknown that the capacity-achieving distribution for this channel is discrete\nwith finitely many points. Recently, for $\\lambda=0$, a lower bound of order\n$\\sqrt{\\mathsf{A}}$ and an upper bound of order $\\mathsf{A} \\log^2(\\mathsf{A})$\nhave been demonstrated on the cardinality of the support of the optimal input\ndistribution. In this work, we improve these results in several ways. First, we provide\nupper and lower bounds that hold for non-zero dark current. Second, we produce\na sharper upper bound with a far simpler technique. In particular, for\n$\\lambda=0$, we sharpen the upper bound from the order of $\\mathsf{A}\n\\log^2(\\mathsf{A})$ to the order of $\\mathsf{A}$. Finally, some other\nadditional information about the location of the support is provided.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Bounds on the Number of Support Points of the Capacity-Achieving Input for Amplitude Constrained Poisson Channels\",\"authors\":\"Luca BarlettaShitz, Alex DytsoShitz, Shlomo ShamaiShitz\",\"doi\":\"arxiv-2401.05045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work considers a discrete-time Poisson noise channel with an input\\namplitude constraint $\\\\mathsf{A}$ and a dark current parameter $\\\\lambda$. It is\\nknown that the capacity-achieving distribution for this channel is discrete\\nwith finitely many points. Recently, for $\\\\lambda=0$, a lower bound of order\\n$\\\\sqrt{\\\\mathsf{A}}$ and an upper bound of order $\\\\mathsf{A} \\\\log^2(\\\\mathsf{A})$\\nhave been demonstrated on the cardinality of the support of the optimal input\\ndistribution. In this work, we improve these results in several ways. First, we provide\\nupper and lower bounds that hold for non-zero dark current. Second, we produce\\na sharper upper bound with a far simpler technique. In particular, for\\n$\\\\lambda=0$, we sharpen the upper bound from the order of $\\\\mathsf{A}\\n\\\\log^2(\\\\mathsf{A})$ to the order of $\\\\mathsf{A}$. Finally, some other\\nadditional information about the location of the support is provided.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.05045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.05045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究考虑了一种离散时间泊松噪声信道,该信道具有输入振幅约束 $\mathsf{A}$ 和暗电流参数 $\lambda$ 。众所周知,该信道的容量分布是离散的,具有有限多个点。最近,当 $\lambda=0$ 时,一个阶为 $\sqrt\mathsf{A}}$ 的下界和一个阶为 $\mathsf{A}} 的上界出现了。\log^2(\mathsf{A})$已被证明是最优输入分布支持的万有引力。在这项工作中,我们从几个方面改进了这些结果。首先,我们提供了暗电流不为零时的上下限。其次,我们用一种简单得多的技术得出了更尖锐的上界。特别是,对于$lambda=0$,我们把上界从$\mathsf{A}\log^2(\mathsf{A})$的数量级锐化到$\mathsf{A}$的数量级。最后,我们还提供了一些关于支持位置的附加信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Bounds on the Number of Support Points of the Capacity-Achieving Input for Amplitude Constrained Poisson Channels
This work considers a discrete-time Poisson noise channel with an input amplitude constraint $\mathsf{A}$ and a dark current parameter $\lambda$. It is known that the capacity-achieving distribution for this channel is discrete with finitely many points. Recently, for $\lambda=0$, a lower bound of order $\sqrt{\mathsf{A}}$ and an upper bound of order $\mathsf{A} \log^2(\mathsf{A})$ have been demonstrated on the cardinality of the support of the optimal input distribution. In this work, we improve these results in several ways. First, we provide upper and lower bounds that hold for non-zero dark current. Second, we produce a sharper upper bound with a far simpler technique. In particular, for $\lambda=0$, we sharpen the upper bound from the order of $\mathsf{A} \log^2(\mathsf{A})$ to the order of $\mathsf{A}$. Finally, some other additional information about the location of the support is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信