AWDS-网络:用于描述不同乳腺肿块特征的全场自动分割网络

IF 3.2 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiajia Jiao, Yingzhao Chen, Zhiyu Li, Tien-Hsiung Weng
{"title":"AWDS-网络:用于描述不同乳腺肿块特征的全场自动分割网络","authors":"Jiajia Jiao, Yingzhao Chen, Zhiyu Li, Tien-Hsiung Weng","doi":"10.1080/09540091.2023.2289836","DOIUrl":null,"url":null,"abstract":"Diverse breast masses in size, shape and place make accurate image segmentation more challenging in a unified deep-learning network. Therefore, based on the U-net network, an adaptive automatic who...","PeriodicalId":50629,"journal":{"name":"Connection Science","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AWDS-net: automatic whole-field segmentation network for characterising diverse breast masses\",\"authors\":\"Jiajia Jiao, Yingzhao Chen, Zhiyu Li, Tien-Hsiung Weng\",\"doi\":\"10.1080/09540091.2023.2289836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diverse breast masses in size, shape and place make accurate image segmentation more challenging in a unified deep-learning network. Therefore, based on the U-net network, an adaptive automatic who...\",\"PeriodicalId\":50629,\"journal\":{\"name\":\"Connection Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connection Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09540091.2023.2289836\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connection Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09540091.2023.2289836","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

乳房肿块的大小、形状和位置各不相同,这使得在统一的深度学习网络中进行准确的图像分割更具挑战性。因此,基于 U-net 网络,一种自适应的自动乳房肿块图像分割技术可用于乳房肿块的图像分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AWDS-net: automatic whole-field segmentation network for characterising diverse breast masses
Diverse breast masses in size, shape and place make accurate image segmentation more challenging in a unified deep-learning network. Therefore, based on the U-net network, an adaptive automatic who...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Connection Science
Connection Science 工程技术-计算机:理论方法
CiteScore
6.50
自引率
39.60%
发文量
94
审稿时长
3 months
期刊介绍: Connection Science is an interdisciplinary journal dedicated to exploring the convergence of the analytic and synthetic sciences, including neuroscience, computational modelling, artificial intelligence, machine learning, deep learning, Database, Big Data, quantum computing, Blockchain, Zero-Knowledge, Internet of Things, Cybersecurity, and parallel and distributed computing. A strong focus is on the articles arising from connectionist, probabilistic, dynamical, or evolutionary approaches in aspects of Computer Science, applied applications, and systems-level computational subjects that seek to understand models in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信