分形傅里叶限制估计系列及其对 Kakeya 问题的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bassam Shayya
{"title":"分形傅里叶限制估计系列及其对 Kakeya 问题的影响","authors":"Bassam Shayya","doi":"10.1007/s00041-023-10065-9","DOIUrl":null,"url":null,"abstract":"<p>In a recent paper, Du and Zhang (Ann Math 189:837–861, 2019) proved a fractal Fourier restriction estimate and used it to establish the sharp <span>\\(L^2\\)</span> estimate on the Schrödinger maximal function in <span>\\(\\mathbb R^n\\)</span>, <span>\\(n \\ge 2\\)</span>. In this paper, we show that the Du–Zhang estimate is the endpoint of a family of fractal restriction estimates such that each member of the family (other than the original) implies a sharp Kakeya result in <span>\\(\\mathbb R^n\\)</span> that is closely related to the polynomial Wolff axioms. We also prove that all the estimates of our family are true in <span>\\(\\mathbb R^2\\)</span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Family of Fractal Fourier Restriction Estimates with Implications on the Kakeya Problem\",\"authors\":\"Bassam Shayya\",\"doi\":\"10.1007/s00041-023-10065-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a recent paper, Du and Zhang (Ann Math 189:837–861, 2019) proved a fractal Fourier restriction estimate and used it to establish the sharp <span>\\\\(L^2\\\\)</span> estimate on the Schrödinger maximal function in <span>\\\\(\\\\mathbb R^n\\\\)</span>, <span>\\\\(n \\\\ge 2\\\\)</span>. In this paper, we show that the Du–Zhang estimate is the endpoint of a family of fractal restriction estimates such that each member of the family (other than the original) implies a sharp Kakeya result in <span>\\\\(\\\\mathbb R^n\\\\)</span> that is closely related to the polynomial Wolff axioms. We also prove that all the estimates of our family are true in <span>\\\\(\\\\mathbb R^2\\\\)</span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-023-10065-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-023-10065-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一篇论文中,杜和张(Ann Math 189:837-861,2019)证明了一个分形傅里叶限制估计,并用它建立了关于薛定谔最大函数在\(\mathbb R^n\),\(n \ge 2\)中的锐\(L^2\)估计。在本文中,我们证明了 Du-Zhang 估计是分形限制估计族的端点,该族中的每个成员(除原始估计外)都隐含着一个与多项式沃尔夫公理密切相关的 \(\mathbb R^n\) 中尖锐的 Kakeya 结果。我们还证明了我们家族的所有估计在 ( (mathbb R^2)中都是真的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Family of Fractal Fourier Restriction Estimates with Implications on the Kakeya Problem

In a recent paper, Du and Zhang (Ann Math 189:837–861, 2019) proved a fractal Fourier restriction estimate and used it to establish the sharp \(L^2\) estimate on the Schrödinger maximal function in \(\mathbb R^n\), \(n \ge 2\). In this paper, we show that the Du–Zhang estimate is the endpoint of a family of fractal restriction estimates such that each member of the family (other than the original) implies a sharp Kakeya result in \(\mathbb R^n\) that is closely related to the polynomial Wolff axioms. We also prove that all the estimates of our family are true in \(\mathbb R^2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信