Darrell Cheu, Thomas Adams, Shripad Revankar, Vilas Pol
{"title":"将锂作为氚储存介质用于光伏发电的评估","authors":"Darrell Cheu, Thomas Adams, Shripad Revankar, Vilas Pol","doi":"10.1063/5.0169156","DOIUrl":null,"url":null,"abstract":"Lithium foils were demonstrated to absorb surrogate protium for tritium-powered betavoltaics. 20 μm thick lithium foils were hole-punched from a ribbon of electrodeposited lithium on copper foil. The lithium foils were loaded with hydrogen in a custom Sievert apparatus where the pressure drop showed full hydriding at a hydrogen pressure of 2 bar and at all loading temperatures above the lithium melting point at 190, 200, 225, 250, and 300. Lithium hydride formation was confirmed with Raman spectroscopy after hydrogen loading. The kinetics of experimental hydride formation was compared to the diffusion-limited Mintz–Bloch model. While the Mintz–Bloch model showed good fit with the experimental loadings, the model overpredicted the loading kinetics starting at 250 °C and at higher temperatures. The overprediction was either caused by lithium hydride outgassing due to some reduction with some residual lithium hydroxide created from brief air exposure when sealing the lithium in the reactor or a transition from diffusion-limited hydride growth to surface or metal–hydride interface-limited hydride growth.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"54 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of lithium as a tritium storage medium for betavoltaics\",\"authors\":\"Darrell Cheu, Thomas Adams, Shripad Revankar, Vilas Pol\",\"doi\":\"10.1063/5.0169156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium foils were demonstrated to absorb surrogate protium for tritium-powered betavoltaics. 20 μm thick lithium foils were hole-punched from a ribbon of electrodeposited lithium on copper foil. The lithium foils were loaded with hydrogen in a custom Sievert apparatus where the pressure drop showed full hydriding at a hydrogen pressure of 2 bar and at all loading temperatures above the lithium melting point at 190, 200, 225, 250, and 300. Lithium hydride formation was confirmed with Raman spectroscopy after hydrogen loading. The kinetics of experimental hydride formation was compared to the diffusion-limited Mintz–Bloch model. While the Mintz–Bloch model showed good fit with the experimental loadings, the model overpredicted the loading kinetics starting at 250 °C and at higher temperatures. The overprediction was either caused by lithium hydride outgassing due to some reduction with some residual lithium hydroxide created from brief air exposure when sealing the lithium in the reactor or a transition from diffusion-limited hydride growth to surface or metal–hydride interface-limited hydride growth.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0169156\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0169156","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Evaluation of lithium as a tritium storage medium for betavoltaics
Lithium foils were demonstrated to absorb surrogate protium for tritium-powered betavoltaics. 20 μm thick lithium foils were hole-punched from a ribbon of electrodeposited lithium on copper foil. The lithium foils were loaded with hydrogen in a custom Sievert apparatus where the pressure drop showed full hydriding at a hydrogen pressure of 2 bar and at all loading temperatures above the lithium melting point at 190, 200, 225, 250, and 300. Lithium hydride formation was confirmed with Raman spectroscopy after hydrogen loading. The kinetics of experimental hydride formation was compared to the diffusion-limited Mintz–Bloch model. While the Mintz–Bloch model showed good fit with the experimental loadings, the model overpredicted the loading kinetics starting at 250 °C and at higher temperatures. The overprediction was either caused by lithium hydride outgassing due to some reduction with some residual lithium hydroxide created from brief air exposure when sealing the lithium in the reactor or a transition from diffusion-limited hydride growth to surface or metal–hydride interface-limited hydride growth.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces