将锂作为氚储存介质用于光伏发电的评估

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Darrell Cheu, Thomas Adams, Shripad Revankar, Vilas Pol
{"title":"将锂作为氚储存介质用于光伏发电的评估","authors":"Darrell Cheu, Thomas Adams, Shripad Revankar, Vilas Pol","doi":"10.1063/5.0169156","DOIUrl":null,"url":null,"abstract":"Lithium foils were demonstrated to absorb surrogate protium for tritium-powered betavoltaics. 20 μm thick lithium foils were hole-punched from a ribbon of electrodeposited lithium on copper foil. The lithium foils were loaded with hydrogen in a custom Sievert apparatus where the pressure drop showed full hydriding at a hydrogen pressure of 2 bar and at all loading temperatures above the lithium melting point at 190, 200, 225, 250, and 300. Lithium hydride formation was confirmed with Raman spectroscopy after hydrogen loading. The kinetics of experimental hydride formation was compared to the diffusion-limited Mintz–Bloch model. While the Mintz–Bloch model showed good fit with the experimental loadings, the model overpredicted the loading kinetics starting at 250 °C and at higher temperatures. The overprediction was either caused by lithium hydride outgassing due to some reduction with some residual lithium hydroxide created from brief air exposure when sealing the lithium in the reactor or a transition from diffusion-limited hydride growth to surface or metal–hydride interface-limited hydride growth.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"54 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of lithium as a tritium storage medium for betavoltaics\",\"authors\":\"Darrell Cheu, Thomas Adams, Shripad Revankar, Vilas Pol\",\"doi\":\"10.1063/5.0169156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium foils were demonstrated to absorb surrogate protium for tritium-powered betavoltaics. 20 μm thick lithium foils were hole-punched from a ribbon of electrodeposited lithium on copper foil. The lithium foils were loaded with hydrogen in a custom Sievert apparatus where the pressure drop showed full hydriding at a hydrogen pressure of 2 bar and at all loading temperatures above the lithium melting point at 190, 200, 225, 250, and 300. Lithium hydride formation was confirmed with Raman spectroscopy after hydrogen loading. The kinetics of experimental hydride formation was compared to the diffusion-limited Mintz–Bloch model. While the Mintz–Bloch model showed good fit with the experimental loadings, the model overpredicted the loading kinetics starting at 250 °C and at higher temperatures. The overprediction was either caused by lithium hydride outgassing due to some reduction with some residual lithium hydroxide created from brief air exposure when sealing the lithium in the reactor or a transition from diffusion-limited hydride growth to surface or metal–hydride interface-limited hydride growth.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0169156\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0169156","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

实验证明,锂箔可吸收代氕,用于氚动力光伏。20 μm 厚的锂箔是从铜箔上的电沉积锂带打孔而成的。锂箔在定制的 Sievert 仪器中装入氢气,压降显示在氢气压力为 2 巴时完全水合,所有装载温度均高于锂的熔点(190、200、225、250 和 300)。氢负载后,拉曼光谱证实了锂氢化物的形成。实验中氢化物形成的动力学与扩散受限的 Mintz-Bloch 模型进行了比较。虽然 Mintz-Bloch 模型与实验负载显示出良好的拟合,但该模型从 250 °C 开始以及在更高温度下对负载动力学的预测过高。造成预测过高的原因可能是锂氢化物在反应器中密封锂时与短暂暴露在空气中的残留氢氧化锂发生了还原反应而导致的放气,也可能是从扩散受限的氢化物生长过渡到表面或金属氢化物界面受限的氢化物生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of lithium as a tritium storage medium for betavoltaics
Lithium foils were demonstrated to absorb surrogate protium for tritium-powered betavoltaics. 20 μm thick lithium foils were hole-punched from a ribbon of electrodeposited lithium on copper foil. The lithium foils were loaded with hydrogen in a custom Sievert apparatus where the pressure drop showed full hydriding at a hydrogen pressure of 2 bar and at all loading temperatures above the lithium melting point at 190, 200, 225, 250, and 300. Lithium hydride formation was confirmed with Raman spectroscopy after hydrogen loading. The kinetics of experimental hydride formation was compared to the diffusion-limited Mintz–Bloch model. While the Mintz–Bloch model showed good fit with the experimental loadings, the model overpredicted the loading kinetics starting at 250 °C and at higher temperatures. The overprediction was either caused by lithium hydride outgassing due to some reduction with some residual lithium hydroxide created from brief air exposure when sealing the lithium in the reactor or a transition from diffusion-limited hydride growth to surface or metal–hydride interface-limited hydride growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信