在 CT/MR 双模态图像上可靠划分宫颈癌放疗临床靶区

IF 2.9 2区 工程技术 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Ying Sun, Yuening Wang, Kexin Gan, Yuxin Wang, Ying Chen, Yun Ge, Jie Yuan, Hanzi Xu
{"title":"在 CT/MR 双模态图像上可靠划分宫颈癌放疗临床靶区","authors":"Ying Sun, Yuening Wang, Kexin Gan, Yuxin Wang, Ying Chen, Yun Ge, Jie Yuan, Hanzi Xu","doi":"10.1007/s10278-023-00951-5","DOIUrl":null,"url":null,"abstract":"<p>Accurate delineation of the clinical target volume (CTV) is a crucial prerequisite for safe and effective radiotherapy characterized. This study addresses the integration of magnetic resonance (MR) images to aid in target delineation on computed tomography (CT) images. However, obtaining MR images directly can be challenging. Therefore, we employ AI-based image generation techniques to “intelligentially generate” MR images from CT images to improve CTV delineation based on CT images. To generate high-quality MR images, we propose an attention-guided single-loop image generation model. The model can yield higher-quality images by introducing an attention mechanism in feature extraction and enhancing the loss function. Based on the generated MR images, we propose a CTV segmentation model fusing multi-scale features through image fusion and a hollow space pyramid module to enhance segmentation accuracy. The image generation model used in this study improves the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) from 14.87 and 0.58 to 16.72 and 0.67, respectively, and improves the feature distribution distance and learning-perception image similarity from 180.86 and 0.28 to 110.98 and 0.22, achieving higher quality image generation. The proposed segmentation method demonstrates high accuracy, compared with the FCN method, the intersection over union ratio and the Dice coefficient are improved from 0.8360 and 0.8998 to 0.9043 and 0.9473, respectively. Hausdorff distance and mean surface distance decreased from 5.5573 mm and 2.3269 mm to 4.7204 mm and 0.9397 mm, respectively, achieving clinically acceptable segmentation accuracy. Our method might reduce physicians’ manual workload and accelerate the diagnosis and treatment process while decreasing inter-observer variability in identifying anatomical structures.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable Delineation of Clinical Target Volumes for Cervical Cancer Radiotherapy on CT/MR Dual-Modality Images\",\"authors\":\"Ying Sun, Yuening Wang, Kexin Gan, Yuxin Wang, Ying Chen, Yun Ge, Jie Yuan, Hanzi Xu\",\"doi\":\"10.1007/s10278-023-00951-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate delineation of the clinical target volume (CTV) is a crucial prerequisite for safe and effective radiotherapy characterized. This study addresses the integration of magnetic resonance (MR) images to aid in target delineation on computed tomography (CT) images. However, obtaining MR images directly can be challenging. Therefore, we employ AI-based image generation techniques to “intelligentially generate” MR images from CT images to improve CTV delineation based on CT images. To generate high-quality MR images, we propose an attention-guided single-loop image generation model. The model can yield higher-quality images by introducing an attention mechanism in feature extraction and enhancing the loss function. Based on the generated MR images, we propose a CTV segmentation model fusing multi-scale features through image fusion and a hollow space pyramid module to enhance segmentation accuracy. The image generation model used in this study improves the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) from 14.87 and 0.58 to 16.72 and 0.67, respectively, and improves the feature distribution distance and learning-perception image similarity from 180.86 and 0.28 to 110.98 and 0.22, achieving higher quality image generation. The proposed segmentation method demonstrates high accuracy, compared with the FCN method, the intersection over union ratio and the Dice coefficient are improved from 0.8360 and 0.8998 to 0.9043 and 0.9473, respectively. Hausdorff distance and mean surface distance decreased from 5.5573 mm and 2.3269 mm to 4.7204 mm and 0.9397 mm, respectively, achieving clinically acceptable segmentation accuracy. Our method might reduce physicians’ manual workload and accelerate the diagnosis and treatment process while decreasing inter-observer variability in identifying anatomical structures.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-023-00951-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00951-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

准确划定临床靶区(CTV)是安全有效放疗的重要前提。本研究探讨了如何整合磁共振(MR)图像,以帮助在计算机断层扫描(CT)图像上进行靶区划分。然而,直接获取磁共振图像可能具有挑战性。因此,我们采用基于人工智能的图像生成技术,从 CT 图像 "智能生成 "磁共振图像,以改善基于 CT 图像的 CTV 划分。为了生成高质量的 MR 图像,我们提出了一种注意力引导的单环图像生成模型。通过在特征提取中引入注意力机制和增强损失函数,该模型可生成更高质量的图像。根据生成的磁共振图像,我们提出了一种通过图像融合和空心空间金字塔模块融合多尺度特征的 CTV 分割模型,以提高分割精度。本研究采用的图像生成模型将峰值信噪比(PSNR)和结构相似性指数(SSIM)分别从 14.87 和 0.58 提高到 16.72 和 0.67,并将特征分布距离和学习感知图像相似性从 180.86 和 0.28 提高到 110.98 和 0.22,实现了更高质量的图像生成。与 FCN 方法相比,所提出的分割方法具有较高的准确性,交集大于联合比和 Dice 系数分别从 0.8360 和 0.8998 提高到 0.9043 和 0.9473。豪斯多夫距离和平均表面距离分别从 5.5573 毫米和 2.3269 毫米降至 4.7204 毫米和 0.9397 毫米,达到了临床可接受的分割精度。我们的方法可以减轻医生的人工工作量,加快诊断和治疗过程,同时减少观察者之间在识别解剖结构方面的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reliable Delineation of Clinical Target Volumes for Cervical Cancer Radiotherapy on CT/MR Dual-Modality Images

Reliable Delineation of Clinical Target Volumes for Cervical Cancer Radiotherapy on CT/MR Dual-Modality Images

Accurate delineation of the clinical target volume (CTV) is a crucial prerequisite for safe and effective radiotherapy characterized. This study addresses the integration of magnetic resonance (MR) images to aid in target delineation on computed tomography (CT) images. However, obtaining MR images directly can be challenging. Therefore, we employ AI-based image generation techniques to “intelligentially generate” MR images from CT images to improve CTV delineation based on CT images. To generate high-quality MR images, we propose an attention-guided single-loop image generation model. The model can yield higher-quality images by introducing an attention mechanism in feature extraction and enhancing the loss function. Based on the generated MR images, we propose a CTV segmentation model fusing multi-scale features through image fusion and a hollow space pyramid module to enhance segmentation accuracy. The image generation model used in this study improves the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) from 14.87 and 0.58 to 16.72 and 0.67, respectively, and improves the feature distribution distance and learning-perception image similarity from 180.86 and 0.28 to 110.98 and 0.22, achieving higher quality image generation. The proposed segmentation method demonstrates high accuracy, compared with the FCN method, the intersection over union ratio and the Dice coefficient are improved from 0.8360 and 0.8998 to 0.9043 and 0.9473, respectively. Hausdorff distance and mean surface distance decreased from 5.5573 mm and 2.3269 mm to 4.7204 mm and 0.9397 mm, respectively, achieving clinically acceptable segmentation accuracy. Our method might reduce physicians’ manual workload and accelerate the diagnosis and treatment process while decreasing inter-observer variability in identifying anatomical structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Digital Imaging
Journal of Digital Imaging 医学-核医学
CiteScore
7.50
自引率
6.80%
发文量
192
审稿时长
6-12 weeks
期刊介绍: The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals. Suggested Topics PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信