高效计算 Zps 附加码的奇偶校验矩阵

Cristina Fernández-Córdoba, Adrián Torres, Carlos Vela, Mercè Villanueva
{"title":"高效计算 Zps 附加码的奇偶校验矩阵","authors":"Cristina Fernández-Córdoba, Adrián Torres, Carlos Vela, Mercè Villanueva","doi":"arxiv-2401.05247","DOIUrl":null,"url":null,"abstract":"The Zps-additive codes of length n are subgroups of Zps^n , and can be seen\nas a generalization of linear codes over Z2, Z4, or more general over Z2s . In\nthis paper, we show two methods for computing a parity-check matrix of a\nZps-additive code from a generator matrix of the code in standard form. We also\ncompare the performance of our results implemented in Magma with the current\navailable function in Magma for codes over finite rings in general. A time\ncomplexity analysis is also shown.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing efficiently a parity-check matrix for Zps-additive codes\",\"authors\":\"Cristina Fernández-Córdoba, Adrián Torres, Carlos Vela, Mercè Villanueva\",\"doi\":\"arxiv-2401.05247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Zps-additive codes of length n are subgroups of Zps^n , and can be seen\\nas a generalization of linear codes over Z2, Z4, or more general over Z2s . In\\nthis paper, we show two methods for computing a parity-check matrix of a\\nZps-additive code from a generator matrix of the code in standard form. We also\\ncompare the performance of our results implemented in Magma with the current\\navailable function in Magma for codes over finite rings in general. A time\\ncomplexity analysis is also shown.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.05247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.05247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长度为 n 的 Zps-additive 码是 Zps^n 的子群,可以看作是 Z2、Z4 或更广义的 Z2s 上线性码的广义化。在本文中,我们展示了从标准形式的 Zps-additive 码生成矩阵计算该码奇偶校验矩阵的两种方法。我们还比较了我们在 Magma 中实现的结果与 Magma 中针对有限环上的一般代码的当前可用函数的性能。我们还展示了时间复杂性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing efficiently a parity-check matrix for Zps-additive codes
The Zps-additive codes of length n are subgroups of Zps^n , and can be seen as a generalization of linear codes over Z2, Z4, or more general over Z2s . In this paper, we show two methods for computing a parity-check matrix of a Zps-additive code from a generator matrix of the code in standard form. We also compare the performance of our results implemented in Magma with the current available function in Magma for codes over finite rings in general. A time complexity analysis is also shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信