实时呼吸分析,建立健康的人体呼吸曲线。

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS
Zachary Joseph Sasiene, Erick Scott LeBrun, Eric Schaller, Phillip Michael Mach, Robert Taylor, Lionel Candelaria, Trevor Griffiths Glaros, Justin Baca, Ethan Matthew McBride
{"title":"实时呼吸分析,建立健康的人体呼吸曲线。","authors":"Zachary Joseph Sasiene, Erick Scott LeBrun, Eric Schaller, Phillip Michael Mach, Robert Taylor, Lionel Candelaria, Trevor Griffiths Glaros, Justin Baca, Ethan Matthew McBride","doi":"10.1088/1752-7163/ad1cf1","DOIUrl":null,"url":null,"abstract":"<p><p>The direct analysis of molecules contained within human breath has had significant implications for clinical and diagnostic applications in recent decades. However, attempts to compare one study to another or to reproduce previous work are hampered by: variability between sampling methodologies, human phenotypic variability, complex interactions between compounds within breath, and confounding signals from comorbidities. Towards this end, we have endeavored to create an averaged healthy human 'profile' against which follow-on studies might be compared. Through the use of direct secondary electrospray ionization combined with a high-resolution mass spectrometry and in-house bioinformatics pipeline, we seek to curate an average healthy human profile for breath and use this model to distinguish differences inter- and intra-day for human volunteers. Breath samples were significantly different in PERMANOVA analysis and ANOSIM analysis based on Time of Day, Participant ID, Date of Sample, Sex of Participant, and Age of Participant (<i>p</i>< 0.001). Optimal binning analysis identify strong associations between specific features and variables. These include 227 breath features identified as unique identifiers for 28 of the 31 participants. Four signals were identified to be strongly associated with female participants and one with male participants. A total of 37 signals were identified to be strongly associated with the time-of-day samples were taken. Threshold indicator taxa analysis indicated a shift in significant breath features across the age gradient of participants with peak disruption of breath metabolites occurring at around age 32. Forty-eight features were identified after filtering from which a healthy human breath profile for all participants was created.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time breath analysis towards a healthy human breath profile.\",\"authors\":\"Zachary Joseph Sasiene, Erick Scott LeBrun, Eric Schaller, Phillip Michael Mach, Robert Taylor, Lionel Candelaria, Trevor Griffiths Glaros, Justin Baca, Ethan Matthew McBride\",\"doi\":\"10.1088/1752-7163/ad1cf1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The direct analysis of molecules contained within human breath has had significant implications for clinical and diagnostic applications in recent decades. However, attempts to compare one study to another or to reproduce previous work are hampered by: variability between sampling methodologies, human phenotypic variability, complex interactions between compounds within breath, and confounding signals from comorbidities. Towards this end, we have endeavored to create an averaged healthy human 'profile' against which follow-on studies might be compared. Through the use of direct secondary electrospray ionization combined with a high-resolution mass spectrometry and in-house bioinformatics pipeline, we seek to curate an average healthy human profile for breath and use this model to distinguish differences inter- and intra-day for human volunteers. Breath samples were significantly different in PERMANOVA analysis and ANOSIM analysis based on Time of Day, Participant ID, Date of Sample, Sex of Participant, and Age of Participant (<i>p</i>< 0.001). Optimal binning analysis identify strong associations between specific features and variables. These include 227 breath features identified as unique identifiers for 28 of the 31 participants. Four signals were identified to be strongly associated with female participants and one with male participants. A total of 37 signals were identified to be strongly associated with the time-of-day samples were taken. Threshold indicator taxa analysis indicated a shift in significant breath features across the age gradient of participants with peak disruption of breath metabolites occurring at around age 32. Forty-eight features were identified after filtering from which a healthy human breath profile for all participants was created.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad1cf1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad1cf1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,对人体呼气中所含分子的直接分析对临床和诊断应用产生了重大影响。然而,将一项研究与另一项研究进行比较或复制以前的工作受到以下因素的阻碍:采样方法之间的差异、人类表型的差异、呼气中化合物之间复杂的相互作用以及合并症带来的干扰信号。为此,我们努力创建一个平均的健康人 "档案",以便后续研究进行比较。通过使用直接二次电喷雾离子化技术(SESI),结合高分辨率质谱仪(HRMS)和内部生物信息学管道,我们试图为呼出的气体建立一个平均的健康人档案,并利用这一模型来区分人类志愿者在不同日期之间和不同日期之内的差异。在 PERMANOVA 分析和 ANOSIM 分析中,根据每天的时间、参与者 ID、样本日期、参与者性别和参与者年龄,呼吸样本存在显著差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time breath analysis towards a healthy human breath profile.

The direct analysis of molecules contained within human breath has had significant implications for clinical and diagnostic applications in recent decades. However, attempts to compare one study to another or to reproduce previous work are hampered by: variability between sampling methodologies, human phenotypic variability, complex interactions between compounds within breath, and confounding signals from comorbidities. Towards this end, we have endeavored to create an averaged healthy human 'profile' against which follow-on studies might be compared. Through the use of direct secondary electrospray ionization combined with a high-resolution mass spectrometry and in-house bioinformatics pipeline, we seek to curate an average healthy human profile for breath and use this model to distinguish differences inter- and intra-day for human volunteers. Breath samples were significantly different in PERMANOVA analysis and ANOSIM analysis based on Time of Day, Participant ID, Date of Sample, Sex of Participant, and Age of Participant (p< 0.001). Optimal binning analysis identify strong associations between specific features and variables. These include 227 breath features identified as unique identifiers for 28 of the 31 participants. Four signals were identified to be strongly associated with female participants and one with male participants. A total of 37 signals were identified to be strongly associated with the time-of-day samples were taken. Threshold indicator taxa analysis indicated a shift in significant breath features across the age gradient of participants with peak disruption of breath metabolites occurring at around age 32. Forty-eight features were identified after filtering from which a healthy human breath profile for all participants was created.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信