利用基于机器学习的筛选和自由能扰动发现造血祖细胞激酶 1 抑制剂。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dazhi Feng, Bo Liu, Zhiwei Chen, Jinyi Xu, Meiyu Geng, Wenhu Duan, Jing Ai, Hefeng Zhang
{"title":"利用基于机器学习的筛选和自由能扰动发现造血祖细胞激酶 1 抑制剂。","authors":"Dazhi Feng, Bo Liu, Zhiwei Chen, Jinyi Xu, Meiyu Geng, Wenhu Duan, Jing Ai, Hefeng Zhang","doi":"10.1080/07391102.2024.2301754","DOIUrl":null,"url":null,"abstract":"<p><p>Hematopoietic progenitor kinase 1 (HPK1) is a key negative regulator of T-cell receptor (TCR) signaling and a promising target for cancer immunotherapy. The development of novel HPK1 inhibitors is challenging yet promising. In this study, we used a combination of machine learning (ML)-based virtual screening and free energy perturbation (FEP) calculations to identify novel HPK1 inhibitors. ML-based screening yielded 10 potent HPK1 inhibitors (IC<sub>50</sub> < 1 μM). The FEP-guided modification of the in-house false-positive hit, <b>DW21302</b>, revealed that a single key atom change could trigger activity cliffs. The resulting <b>DW21302-A</b> was a potent HPK1 inhibitor (IC<sub>50</sub> = 2.1 nM) and potently inhibited cellular HPK1 signaling and enhanced T-cell function. Molecular dynamics (MD) simulations and ADME predictions confirmed <b>DW21302-A</b> as candidate compound. This study provides new strategies and chemical scaffolds for HPK1 inhibitor development.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"4152-4164"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of hematopoietic progenitor kinase 1 inhibitors using machine learning-based screening and free energy perturbation.\",\"authors\":\"Dazhi Feng, Bo Liu, Zhiwei Chen, Jinyi Xu, Meiyu Geng, Wenhu Duan, Jing Ai, Hefeng Zhang\",\"doi\":\"10.1080/07391102.2024.2301754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hematopoietic progenitor kinase 1 (HPK1) is a key negative regulator of T-cell receptor (TCR) signaling and a promising target for cancer immunotherapy. The development of novel HPK1 inhibitors is challenging yet promising. In this study, we used a combination of machine learning (ML)-based virtual screening and free energy perturbation (FEP) calculations to identify novel HPK1 inhibitors. ML-based screening yielded 10 potent HPK1 inhibitors (IC<sub>50</sub> < 1 μM). The FEP-guided modification of the in-house false-positive hit, <b>DW21302</b>, revealed that a single key atom change could trigger activity cliffs. The resulting <b>DW21302-A</b> was a potent HPK1 inhibitor (IC<sub>50</sub> = 2.1 nM) and potently inhibited cellular HPK1 signaling and enhanced T-cell function. Molecular dynamics (MD) simulations and ADME predictions confirmed <b>DW21302-A</b> as candidate compound. This study provides new strategies and chemical scaffolds for HPK1 inhibitor development.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"4152-4164\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2301754\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2301754","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

造血祖细胞激酶1(HPK1)是T细胞受体(TCR)信号传导的一个关键负调控因子,也是癌症免疫疗法的一个前景看好的靶点。新型 HPK1 抑制剂的开发充满挑战,但前景广阔。在这项研究中,我们结合使用了基于机器学习(ML)的虚拟筛选和自由能扰动(FEP)计算来鉴定新型 HPK1 抑制剂。基于 ML 的筛选得到了 10 种有效的 HPK1 抑制剂(IC50 DW21302,揭示了单个关键原子的变化就能引发活性悬崖。最后得到的 DW21302-A 是一种强效 HPK1 抑制剂(IC50 = 2.1 nM),能有效抑制细胞 HPK1 信号传导并增强 T 细胞功能。分子动力学(MD)模拟和 ADME 预测证实 DW21302-A 为候选化合物。这项研究为开发 HPK1 抑制剂提供了新的策略和化学支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of hematopoietic progenitor kinase 1 inhibitors using machine learning-based screening and free energy perturbation.

Hematopoietic progenitor kinase 1 (HPK1) is a key negative regulator of T-cell receptor (TCR) signaling and a promising target for cancer immunotherapy. The development of novel HPK1 inhibitors is challenging yet promising. In this study, we used a combination of machine learning (ML)-based virtual screening and free energy perturbation (FEP) calculations to identify novel HPK1 inhibitors. ML-based screening yielded 10 potent HPK1 inhibitors (IC50 < 1 μM). The FEP-guided modification of the in-house false-positive hit, DW21302, revealed that a single key atom change could trigger activity cliffs. The resulting DW21302-A was a potent HPK1 inhibitor (IC50 = 2.1 nM) and potently inhibited cellular HPK1 signaling and enhanced T-cell function. Molecular dynamics (MD) simulations and ADME predictions confirmed DW21302-A as candidate compound. This study provides new strategies and chemical scaffolds for HPK1 inhibitor development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信