Huiqing Liang, Huixian Li, Fangjiang Li, Xiaobo Xiong, Yang Gao
{"title":"胺碘酮通过抑制 Sigmar1 的表达和阻断 KCNH2 相关钾通道促进心肌细胞凋亡","authors":"Huiqing Liang, Huixian Li, Fangjiang Li, Xiaobo Xiong, Yang Gao","doi":"10.2174/0115665240265771231129105108","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heart failure (HF) is the ultimate transformation result of various cardiovascular diseases. Mitochondria-mediated cardiomyocyte apoptosis has been uncovered to be associated with this disorder.</p><p><strong>Objective: </strong>This study mainly delves into the mechanism of the anti-arrhythmic drug amiodarone on mitochondrial toxicity of cardiomyocytes.</p><p><strong>Methods: </strong>The viability of H9c2 cells treated with amiodarone at 0.5, 1, 2, 3, and 4 μM was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and Sigmar1 expression was examined by quantitative real-time PCR (qRTPCR). After transfection, the viability, apoptosis, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and potassium voltage-gated channel subfamily H member 2 (KCNH2) expression in H9c2 cells were assessed by MTT, flow cytometry, ROS assay kit, mitochondria staining kit, and Western blot.</p><p><strong>Results: </strong>Amiodarone at 1-4 μM notably weakened H9c2 cell viability with IC50 value of 2.62 ± 0.43 μM. Amiodarone at 0.5-4 μM also evidently suppressed the Sigmar1 level in H9c2 cells. Amiodarone repressed H9c2 cell viability and KCNH2 level and triggered apoptosis, ROS production and mitochondrial depolarization, while Sigmar1 upregulation reversed its effects. Moreover, KCNH2 silencing neutralized the combined modulation of amiodarone and Sigmar1 up-regulation on H9c2 cell viability, apoptosis, and ROS production.</p><p><strong>Conclusion: </strong>Amiodarone facilitates the apoptosis of H9c2 cells by restraining Sigmar1 expression and blocking KCNH2-related potassium channels.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amiodarone Advances the Apoptosis of Cardiomyocytes by Repressing Sigmar1 Expression and Blocking KCNH2-related Potassium Channels.\",\"authors\":\"Huiqing Liang, Huixian Li, Fangjiang Li, Xiaobo Xiong, Yang Gao\",\"doi\":\"10.2174/0115665240265771231129105108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Heart failure (HF) is the ultimate transformation result of various cardiovascular diseases. Mitochondria-mediated cardiomyocyte apoptosis has been uncovered to be associated with this disorder.</p><p><strong>Objective: </strong>This study mainly delves into the mechanism of the anti-arrhythmic drug amiodarone on mitochondrial toxicity of cardiomyocytes.</p><p><strong>Methods: </strong>The viability of H9c2 cells treated with amiodarone at 0.5, 1, 2, 3, and 4 μM was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and Sigmar1 expression was examined by quantitative real-time PCR (qRTPCR). After transfection, the viability, apoptosis, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and potassium voltage-gated channel subfamily H member 2 (KCNH2) expression in H9c2 cells were assessed by MTT, flow cytometry, ROS assay kit, mitochondria staining kit, and Western blot.</p><p><strong>Results: </strong>Amiodarone at 1-4 μM notably weakened H9c2 cell viability with IC50 value of 2.62 ± 0.43 μM. Amiodarone at 0.5-4 μM also evidently suppressed the Sigmar1 level in H9c2 cells. Amiodarone repressed H9c2 cell viability and KCNH2 level and triggered apoptosis, ROS production and mitochondrial depolarization, while Sigmar1 upregulation reversed its effects. Moreover, KCNH2 silencing neutralized the combined modulation of amiodarone and Sigmar1 up-regulation on H9c2 cell viability, apoptosis, and ROS production.</p><p><strong>Conclusion: </strong>Amiodarone facilitates the apoptosis of H9c2 cells by restraining Sigmar1 expression and blocking KCNH2-related potassium channels.</p>\",\"PeriodicalId\":10873,\"journal\":{\"name\":\"Current molecular medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665240265771231129105108\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240265771231129105108","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Amiodarone Advances the Apoptosis of Cardiomyocytes by Repressing Sigmar1 Expression and Blocking KCNH2-related Potassium Channels.
Background: Heart failure (HF) is the ultimate transformation result of various cardiovascular diseases. Mitochondria-mediated cardiomyocyte apoptosis has been uncovered to be associated with this disorder.
Objective: This study mainly delves into the mechanism of the anti-arrhythmic drug amiodarone on mitochondrial toxicity of cardiomyocytes.
Methods: The viability of H9c2 cells treated with amiodarone at 0.5, 1, 2, 3, and 4 μM was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and Sigmar1 expression was examined by quantitative real-time PCR (qRTPCR). After transfection, the viability, apoptosis, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and potassium voltage-gated channel subfamily H member 2 (KCNH2) expression in H9c2 cells were assessed by MTT, flow cytometry, ROS assay kit, mitochondria staining kit, and Western blot.
Results: Amiodarone at 1-4 μM notably weakened H9c2 cell viability with IC50 value of 2.62 ± 0.43 μM. Amiodarone at 0.5-4 μM also evidently suppressed the Sigmar1 level in H9c2 cells. Amiodarone repressed H9c2 cell viability and KCNH2 level and triggered apoptosis, ROS production and mitochondrial depolarization, while Sigmar1 upregulation reversed its effects. Moreover, KCNH2 silencing neutralized the combined modulation of amiodarone and Sigmar1 up-regulation on H9c2 cell viability, apoptosis, and ROS production.
Conclusion: Amiodarone facilitates the apoptosis of H9c2 cells by restraining Sigmar1 expression and blocking KCNH2-related potassium channels.
期刊介绍:
Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.