计算 $${mathbb {F}}_q^2$ 中的弧线

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Krishnendu Bhowmick, Oliver Roche-Newton
{"title":"计算 $${mathbb {F}}_q^2$ 中的弧线","authors":"Krishnendu Bhowmick, Oliver Roche-Newton","doi":"10.1007/s00454-023-00622-w","DOIUrl":null,"url":null,"abstract":"<p>An arc in <span>\\(\\mathbb F_q^2\\)</span> is a set <span>\\(P \\subset \\mathbb F_q^2\\)</span> such that no three points of <i>P</i> are collinear. We use the method of hypergraph containers to prove several counting results for arcs. Let <span>\\({\\mathcal {A}}(q)\\)</span> denote the family of all arcs in <span>\\(\\mathbb F_q^2\\)</span>. Our main result is the bound </p><span>$$\\begin{aligned} |{\\mathcal {A}}(q)| \\le 2^{(1+o(1))q}. \\end{aligned}$$</span><p>This matches, up to the factor hidden in the <i>o</i>(1) notation, the trivial lower bound that comes from considering all subsets of an arc of size <i>q</i>. We also give upper bounds for the number of arcs of a fixed (large) size. Let <span>\\(k \\ge q^{2/3}(\\log q)^3\\)</span>, and let <span>\\({\\mathcal {A}}(q,k)\\)</span> denote the family of all arcs in <span>\\(\\mathbb F_q^2\\)</span> with cardinality <i>k</i>. We prove that </p><span>$$\\begin{aligned} |{\\mathcal {A}}(q,k)| \\le \\left( {\\begin{array}{c}(1+o(1))q\\\\ k\\end{array}}\\right) . \\end{aligned}$$</span><p>This result improves a bound of Roche-Newton and Warren [12]. A nearly matching lower bound </p><span>$$\\begin{aligned} |{\\mathcal {A}}(q,k)| \\ge \\left( {\\begin{array}{c}q\\\\ k\\end{array}}\\right) \\end{aligned}$$</span><p>follows by considering all subsets of size <i>k</i> of an arc of size <i>q</i>.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"27 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting Arcs in $${\\\\mathbb {F}}_q^2$$\",\"authors\":\"Krishnendu Bhowmick, Oliver Roche-Newton\",\"doi\":\"10.1007/s00454-023-00622-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An arc in <span>\\\\(\\\\mathbb F_q^2\\\\)</span> is a set <span>\\\\(P \\\\subset \\\\mathbb F_q^2\\\\)</span> such that no three points of <i>P</i> are collinear. We use the method of hypergraph containers to prove several counting results for arcs. Let <span>\\\\({\\\\mathcal {A}}(q)\\\\)</span> denote the family of all arcs in <span>\\\\(\\\\mathbb F_q^2\\\\)</span>. Our main result is the bound </p><span>$$\\\\begin{aligned} |{\\\\mathcal {A}}(q)| \\\\le 2^{(1+o(1))q}. \\\\end{aligned}$$</span><p>This matches, up to the factor hidden in the <i>o</i>(1) notation, the trivial lower bound that comes from considering all subsets of an arc of size <i>q</i>. We also give upper bounds for the number of arcs of a fixed (large) size. Let <span>\\\\(k \\\\ge q^{2/3}(\\\\log q)^3\\\\)</span>, and let <span>\\\\({\\\\mathcal {A}}(q,k)\\\\)</span> denote the family of all arcs in <span>\\\\(\\\\mathbb F_q^2\\\\)</span> with cardinality <i>k</i>. We prove that </p><span>$$\\\\begin{aligned} |{\\\\mathcal {A}}(q,k)| \\\\le \\\\left( {\\\\begin{array}{c}(1+o(1))q\\\\\\\\ k\\\\end{array}}\\\\right) . \\\\end{aligned}$$</span><p>This result improves a bound of Roche-Newton and Warren [12]. A nearly matching lower bound </p><span>$$\\\\begin{aligned} |{\\\\mathcal {A}}(q,k)| \\\\ge \\\\left( {\\\\begin{array}{c}q\\\\\\\\ k\\\\end{array}}\\\\right) \\\\end{aligned}$$</span><p>follows by considering all subsets of size <i>k</i> of an arc of size <i>q</i>.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00622-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00622-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在 \(\mathbb F_q^2\) 中的弧是一个集合 \(P \subset \mathbb F_q^2\) ,使得 P 中没有三个点是相交的。我们使用超图容器的方法来证明弧的几个计数结果。让 \({\mathcal {A}}(q)\) 表示 \(\mathbb F_q^2\) 中所有弧的族。我们的主要结果是约束 $$\begin{aligned}|2^{(1+o(1))q}.\end{aligned}$$这与考虑大小为 q 的弧的所有子集所得到的微不足道的下界相匹配,最多不超过 o(1) 符号中隐藏的因子。让 \(k \ge q^{2/3}(\log q)^3\), 并让\({\mathcal {A}}(q,k)\) 表示 \(\mathbb F_q^2\) 中心智数为 k 的所有弧的族。|{\mathcal {A}}(q,k)| \le \left( {\begin{array}{c}(1+o(1))q\ k\end{array}\right) .\end{aligned}$$这个结果改进了罗切-牛顿和沃伦[12]的一个界限。一个几乎匹配的下界 $$\begin{aligned}|{mathcal {A}}(q,k)| |ge \left( {\begin{array}{c}q\ k\end{array}}\right) \end{aligned}$$通过考虑大小为 q 的弧的所有大小为 k 的子集,可以得出这个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Counting Arcs in $${\mathbb {F}}_q^2$$

Counting Arcs in $${\mathbb {F}}_q^2$$

An arc in \(\mathbb F_q^2\) is a set \(P \subset \mathbb F_q^2\) such that no three points of P are collinear. We use the method of hypergraph containers to prove several counting results for arcs. Let \({\mathcal {A}}(q)\) denote the family of all arcs in \(\mathbb F_q^2\). Our main result is the bound

$$\begin{aligned} |{\mathcal {A}}(q)| \le 2^{(1+o(1))q}. \end{aligned}$$

This matches, up to the factor hidden in the o(1) notation, the trivial lower bound that comes from considering all subsets of an arc of size q. We also give upper bounds for the number of arcs of a fixed (large) size. Let \(k \ge q^{2/3}(\log q)^3\), and let \({\mathcal {A}}(q,k)\) denote the family of all arcs in \(\mathbb F_q^2\) with cardinality k. We prove that

$$\begin{aligned} |{\mathcal {A}}(q,k)| \le \left( {\begin{array}{c}(1+o(1))q\\ k\end{array}}\right) . \end{aligned}$$

This result improves a bound of Roche-Newton and Warren [12]. A nearly matching lower bound

$$\begin{aligned} |{\mathcal {A}}(q,k)| \ge \left( {\begin{array}{c}q\\ k\end{array}}\right) \end{aligned}$$

follows by considering all subsets of size k of an arc of size q.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信