热带气旋的大小对其外部区域海面温度的敏感性

IF 2.8 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
{"title":"热带气旋的大小对其外部区域海面温度的敏感性","authors":"","doi":"10.1007/s13351-023-2185-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We investigated the sensitivity of the size of a tropical cyclone (TC) to warming or cooling sea surface temperatures (SST) in its outer region by simulating the SST beyond a radius of 200 km from the TC center. Sensitivity experiments showed that an increased SST outside the core region of the TC had a negative effect on its size. Warming in the outer region contributed to the local enhancement of the latent heat flux from sea surface, which promoted the development of small-scale convection and warmed the lower and midtroposphere. This warming altered the local pressure gradient force in the upper and lower troposphere in such a way that it weakened the secondary circulation of the TC and led to suppression of the spiral rainbands outside the eyewall. Further analysis showed that the outward-propagating rainband structure favored an increase in the size of the TC. The diabatic heat released by the rainbands induced an inflow at lower levels, facilitating expansion of the TC. The greater the distance of the rainbands from the center of the TC, given the same amplitude of diabatic heating, the stronger the forced inflow, resulting in a faster increase in the size of the TC.</p>","PeriodicalId":48796,"journal":{"name":"Journal of Meteorological Research","volume":"1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity of the Size of a TC to Sea Surface Temperatures in Its Outer Region\",\"authors\":\"\",\"doi\":\"10.1007/s13351-023-2185-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We investigated the sensitivity of the size of a tropical cyclone (TC) to warming or cooling sea surface temperatures (SST) in its outer region by simulating the SST beyond a radius of 200 km from the TC center. Sensitivity experiments showed that an increased SST outside the core region of the TC had a negative effect on its size. Warming in the outer region contributed to the local enhancement of the latent heat flux from sea surface, which promoted the development of small-scale convection and warmed the lower and midtroposphere. This warming altered the local pressure gradient force in the upper and lower troposphere in such a way that it weakened the secondary circulation of the TC and led to suppression of the spiral rainbands outside the eyewall. Further analysis showed that the outward-propagating rainband structure favored an increase in the size of the TC. The diabatic heat released by the rainbands induced an inflow at lower levels, facilitating expansion of the TC. The greater the distance of the rainbands from the center of the TC, given the same amplitude of diabatic heating, the stronger the forced inflow, resulting in a faster increase in the size of the TC.</p>\",\"PeriodicalId\":48796,\"journal\":{\"name\":\"Journal of Meteorological Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Meteorological Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s13351-023-2185-8\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Meteorological Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13351-023-2185-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们通过模拟热带气旋中心半径 200 公里以外的海面温度,研究了热带气旋(TC)的大小对其外部区域海面温度(SST)升温或降温的敏感性。敏感性实验表明,热带气旋核心区域外的海面温度升高对其规模有负面影响。外围区域的变暖导致海面潜热通量的局部增强,从而促进了小尺度对流的发展,并使中低对流层变暖。这种变暖改变了对流层上部和下部的局部压力梯度力,从而削弱了热带气旋的次级环流,导致眼球外的螺旋雨带受到抑制。进一步分析表明,向外扩展的雨带结构有利于增大 TC 的规模。雨带释放的二重热量诱导低层流入,促进了 TC 的扩张。在静热膨胀幅度相同的情况下,雨带与热气旋中心的距离越远,强迫流入越强,从而导致热气旋的规模增加得越快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity of the Size of a TC to Sea Surface Temperatures in Its Outer Region

Abstract

We investigated the sensitivity of the size of a tropical cyclone (TC) to warming or cooling sea surface temperatures (SST) in its outer region by simulating the SST beyond a radius of 200 km from the TC center. Sensitivity experiments showed that an increased SST outside the core region of the TC had a negative effect on its size. Warming in the outer region contributed to the local enhancement of the latent heat flux from sea surface, which promoted the development of small-scale convection and warmed the lower and midtroposphere. This warming altered the local pressure gradient force in the upper and lower troposphere in such a way that it weakened the secondary circulation of the TC and led to suppression of the spiral rainbands outside the eyewall. Further analysis showed that the outward-propagating rainband structure favored an increase in the size of the TC. The diabatic heat released by the rainbands induced an inflow at lower levels, facilitating expansion of the TC. The greater the distance of the rainbands from the center of the TC, given the same amplitude of diabatic heating, the stronger the forced inflow, resulting in a faster increase in the size of the TC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Meteorological Research
Journal of Meteorological Research METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
6.20
自引率
6.20%
发文量
54
期刊介绍: Journal of Meteorological Research (previously known as Acta Meteorologica Sinica) publishes the latest achievements and developments in the field of atmospheric sciences. Coverage is broad, including topics such as pure and applied meteorology; climatology and climate change; marine meteorology; atmospheric physics and chemistry; cloud physics and weather modification; numerical weather prediction; data assimilation; atmospheric sounding and remote sensing; atmospheric environment and air pollution; radar and satellite meteorology; agricultural and forest meteorology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信