细菌膜模拟胶束和双胶束中的抗菌肽 myxinidin 和 WMR 的结构特征

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yevhen K. Cherniavskyi , Rosario Oliva , Marco Stellato , Pompea Del Vecchio , Stefania Galdiero , Annarita Falanga , Sonja A. Dames , D. Peter Tieleman
{"title":"细菌膜模拟胶束和双胶束中的抗菌肽 myxinidin 和 WMR 的结构特征","authors":"Yevhen K. Cherniavskyi ,&nbsp;Rosario Oliva ,&nbsp;Marco Stellato ,&nbsp;Pompea Del Vecchio ,&nbsp;Stefania Galdiero ,&nbsp;Annarita Falanga ,&nbsp;Sonja A. Dames ,&nbsp;D. Peter Tieleman","doi":"10.1016/j.bbamem.2024.184272","DOIUrl":null,"url":null,"abstract":"<div><p>Antimicrobial peptides<span><span><span> are a promising class of potential antibiotics that interact selectively with negatively charged lipid bilayers<span>. This paper presents the structural characterization of the antimicrobial peptides myxinidin and WMR associated with bacterial membrane mimetic </span></span>micelles<span><span> and bicelles by NMR, CD spectroscopy, and molecular dynamics simulations. Both peptides adopt a different conformation in the lipidic environment than in aqueous solution. The location of the peptides in micelles and bicelles has been studied by paramagnetic relaxation enhancement experiments with paramagnetic tagged 5- and 16-doxyl stearic acid (5-/16-SASL). Molecular dynamics simulations of multiple copies of the peptides were used to obtain an atomic level of detail on membrane-peptide and peptide-peptide interactions. Our results highlight an essential role of the negatively charged membrane mimetic in the structural stability of both myxinidin and WMR. The peptides localize predominantly in the membrane's headgroup region and have a noticeable membrane thinning effect on the overall </span>bilayer structure. Myxinidin and WMR show a different tendency to self-aggregate, which is also influenced by the membrane composition (DOPE/DOPG versus DOPE/DOPG/CL) and can be related to the previously observed difference in the ability of the peptides to disrupt different types of </span></span>model membranes.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural characterization of the antimicrobial peptides myxinidin and WMR in bacterial membrane mimetic micelles and bicelles\",\"authors\":\"Yevhen K. Cherniavskyi ,&nbsp;Rosario Oliva ,&nbsp;Marco Stellato ,&nbsp;Pompea Del Vecchio ,&nbsp;Stefania Galdiero ,&nbsp;Annarita Falanga ,&nbsp;Sonja A. Dames ,&nbsp;D. Peter Tieleman\",\"doi\":\"10.1016/j.bbamem.2024.184272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Antimicrobial peptides<span><span><span> are a promising class of potential antibiotics that interact selectively with negatively charged lipid bilayers<span>. This paper presents the structural characterization of the antimicrobial peptides myxinidin and WMR associated with bacterial membrane mimetic </span></span>micelles<span><span> and bicelles by NMR, CD spectroscopy, and molecular dynamics simulations. Both peptides adopt a different conformation in the lipidic environment than in aqueous solution. The location of the peptides in micelles and bicelles has been studied by paramagnetic relaxation enhancement experiments with paramagnetic tagged 5- and 16-doxyl stearic acid (5-/16-SASL). Molecular dynamics simulations of multiple copies of the peptides were used to obtain an atomic level of detail on membrane-peptide and peptide-peptide interactions. Our results highlight an essential role of the negatively charged membrane mimetic in the structural stability of both myxinidin and WMR. The peptides localize predominantly in the membrane's headgroup region and have a noticeable membrane thinning effect on the overall </span>bilayer structure. Myxinidin and WMR show a different tendency to self-aggregate, which is also influenced by the membrane composition (DOPE/DOPG versus DOPE/DOPG/CL) and can be related to the previously observed difference in the ability of the peptides to disrupt different types of </span></span>model membranes.</span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005273624000038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273624000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

抗菌肽是一类很有前途的潜在抗生素,能选择性地与带负电荷的脂质双分子层相互作用。本文通过核磁共振、CD 光谱和分子动力学模拟研究了抗菌肽 myxinidin 和 WMR 与细菌膜模拟胶束和双胶束的结构特征。这两种肽在脂质环境中的构象与在水溶液中不同。通过顺磁标签 5-和 16-二氧硬脂酸(5-/16-SASL)的顺磁弛豫增强实验,研究了多肽在胶束和双胞中的位置。通过对多份肽进行分子动力学模拟,获得了膜-肽和肽-肽相互作用的原子级细节。我们的研究结果表明,带负电荷的膜模拟物对 myxinidin 和 WMR 的结构稳定性起着至关重要的作用。肽主要定位于膜的头基区,对整个双分子层结构具有明显的膜变薄效应。Myxinidin 和 WMR 表现出不同的自聚集倾向,这也受到膜组成(DOPE/DOPG 与 DOPE/DOPG/CL)的影响,并且可能与之前观察到的多肽破坏不同类型模型膜的能力差异有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural characterization of the antimicrobial peptides myxinidin and WMR in bacterial membrane mimetic micelles and bicelles

Structural characterization of the antimicrobial peptides myxinidin and WMR in bacterial membrane mimetic micelles and bicelles

Structural characterization of the antimicrobial peptides myxinidin and WMR in bacterial membrane mimetic micelles and bicelles

Antimicrobial peptides are a promising class of potential antibiotics that interact selectively with negatively charged lipid bilayers. This paper presents the structural characterization of the antimicrobial peptides myxinidin and WMR associated with bacterial membrane mimetic micelles and bicelles by NMR, CD spectroscopy, and molecular dynamics simulations. Both peptides adopt a different conformation in the lipidic environment than in aqueous solution. The location of the peptides in micelles and bicelles has been studied by paramagnetic relaxation enhancement experiments with paramagnetic tagged 5- and 16-doxyl stearic acid (5-/16-SASL). Molecular dynamics simulations of multiple copies of the peptides were used to obtain an atomic level of detail on membrane-peptide and peptide-peptide interactions. Our results highlight an essential role of the negatively charged membrane mimetic in the structural stability of both myxinidin and WMR. The peptides localize predominantly in the membrane's headgroup region and have a noticeable membrane thinning effect on the overall bilayer structure. Myxinidin and WMR show a different tendency to self-aggregate, which is also influenced by the membrane composition (DOPE/DOPG versus DOPE/DOPG/CL) and can be related to the previously observed difference in the ability of the peptides to disrupt different types of model membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信