再论周期性介质多尺度有限元法的误差估计

Pingbing Ming, Siqi Song
{"title":"再论周期性介质多尺度有限元法的误差估计","authors":"Pingbing Ming, Siqi Song","doi":"10.1137/22m1511060","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 22, Issue 1, Page 106-124, March 2024. <br/> Abstract. We derive the optimal energy error estimate for a multiscale finite element method with oversampling technique applied to an elliptic system with rapidly oscillating periodic coefficients under the assumption that the coefficients are bounded and measurable, which may admit rough microstructures. As a byproduct of the energy error estimate, we derive the rate of convergence in the [math]-norm.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error Estimate of Multiscale Finite Element Method for Periodic Media Revisited\",\"authors\":\"Pingbing Ming, Siqi Song\",\"doi\":\"10.1137/22m1511060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiscale Modeling &amp;Simulation, Volume 22, Issue 1, Page 106-124, March 2024. <br/> Abstract. We derive the optimal energy error estimate for a multiscale finite element method with oversampling technique applied to an elliptic system with rapidly oscillating periodic coefficients under the assumption that the coefficients are bounded and measurable, which may admit rough microstructures. As a byproduct of the energy error estimate, we derive the rate of convergence in the [math]-norm.\",\"PeriodicalId\":501053,\"journal\":{\"name\":\"Multiscale Modeling and Simulation\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1511060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1511060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多尺度建模与仿真》,第 22 卷第 1 期,第 106-124 页,2024 年 3 月。 摘要在系数有界和可测的假设下,我们推导出了应用超采样技术的多尺度有限元方法的最优能量误差估计,该方法适用于具有快速振荡周期性系数的椭圆系统,该系统可能包含粗糙的微结构。作为能量误差估计的副产品,我们推导出了[math]正态下的收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error Estimate of Multiscale Finite Element Method for Periodic Media Revisited
Multiscale Modeling &Simulation, Volume 22, Issue 1, Page 106-124, March 2024.
Abstract. We derive the optimal energy error estimate for a multiscale finite element method with oversampling technique applied to an elliptic system with rapidly oscillating periodic coefficients under the assumption that the coefficients are bounded and measurable, which may admit rough microstructures. As a byproduct of the energy error estimate, we derive the rate of convergence in the [math]-norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信