{"title":"带穿孔锥环的圆柱管式热交换器的熵产生和传热性能:数值研究","authors":"Anitha Sakthivel, Tiju Thomas","doi":"10.1615/heattransres.2024051252","DOIUrl":null,"url":null,"abstract":"Here we report a numerical analysis of a cylindrical tube heat exchanger equipped with perforated conical rings. This study reports entropy generation, energy consumption and thermal evaluation of heat exchanger by using ternary hybrid nanofluid (as a coolant). The nanomaterials such as Al2O3, Cu, MWCNT (multi walled carbon nanotubes) with various volume fraction (φ=0-0.5%) are used. The mean diameter of the nanoparticles is 42 nm. The geometrical effects of perforated conical rings on the heat transfer rate, effectiveness, performance index, entropy generation and energy consumption are discussed. Mass flow rate is varied from 0.2 kg/s to 1 kg/s. The optimum performance is highlighted with 0.5% of volume fraction along with 0.4 kg/s mass flow rate. It is noted that the entropy generation is 50% lower by using ternary hybrid nanofluid. This study enables to understand the choice and volume fraction of particles, base fluid and flow rate of the fluid motion.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy generation and heat transfer performance of cylindrical tube heat exchanger with perforated conical rings: a numerical study\",\"authors\":\"Anitha Sakthivel, Tiju Thomas\",\"doi\":\"10.1615/heattransres.2024051252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we report a numerical analysis of a cylindrical tube heat exchanger equipped with perforated conical rings. This study reports entropy generation, energy consumption and thermal evaluation of heat exchanger by using ternary hybrid nanofluid (as a coolant). The nanomaterials such as Al2O3, Cu, MWCNT (multi walled carbon nanotubes) with various volume fraction (φ=0-0.5%) are used. The mean diameter of the nanoparticles is 42 nm. The geometrical effects of perforated conical rings on the heat transfer rate, effectiveness, performance index, entropy generation and energy consumption are discussed. Mass flow rate is varied from 0.2 kg/s to 1 kg/s. The optimum performance is highlighted with 0.5% of volume fraction along with 0.4 kg/s mass flow rate. It is noted that the entropy generation is 50% lower by using ternary hybrid nanofluid. This study enables to understand the choice and volume fraction of particles, base fluid and flow rate of the fluid motion.\",\"PeriodicalId\":50408,\"journal\":{\"name\":\"Heat Transfer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/heattransres.2024051252\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024051252","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Entropy generation and heat transfer performance of cylindrical tube heat exchanger with perforated conical rings: a numerical study
Here we report a numerical analysis of a cylindrical tube heat exchanger equipped with perforated conical rings. This study reports entropy generation, energy consumption and thermal evaluation of heat exchanger by using ternary hybrid nanofluid (as a coolant). The nanomaterials such as Al2O3, Cu, MWCNT (multi walled carbon nanotubes) with various volume fraction (φ=0-0.5%) are used. The mean diameter of the nanoparticles is 42 nm. The geometrical effects of perforated conical rings on the heat transfer rate, effectiveness, performance index, entropy generation and energy consumption are discussed. Mass flow rate is varied from 0.2 kg/s to 1 kg/s. The optimum performance is highlighted with 0.5% of volume fraction along with 0.4 kg/s mass flow rate. It is noted that the entropy generation is 50% lower by using ternary hybrid nanofluid. This study enables to understand the choice and volume fraction of particles, base fluid and flow rate of the fluid motion.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.