Y. Pachepsky, A. Yakirevich, A. A. Ponizovsky, N. Gummatov
{"title":"耐盐性研究中土壤溶液的渗透势:继承 M. Th. van Genuchten 的创新精神","authors":"Y. Pachepsky, A. Yakirevich, A. A. Ponizovsky, N. Gummatov","doi":"10.1002/vzj2.20299","DOIUrl":null,"url":null,"abstract":"The osmotic potential in soil solutions decreases as salinity increases, and plants cannot take up enough soil water. Therefore, the osmotic potential of soil solutions can serve as an important metric of plant growth conditions in regions affected by soil salinization. Measurements of osmotic potential are labor and time consuming. This work aimed to determine more readily available soil salinity metrics to estimate the osmotic potential in soil solutions. A model to compute the osmotic potential from soil solution composition was developed and validated with data from the U.S. states of Washington, Oregon, Colorado, and Idaho. The mean relative error was 7%. Then, this model was applied to 230 datasets on soil solutions from various salinity-affected regions of Eurasia. The correlation coefficient between logarithms of concentration of highly soluble (not including carbonates and sulfates of calcium and magnesium) in soil solutions at saturation and logarithms of osmotic potential values was above 0.99. The concentration of highly soluble salts in soil solution at saturation was chosen as the predictor of the osmotic potential. It was used to develop nomograms for evaluating the salinity-related yield loss for major field crops, vegetables, and fruits. This work is a part of the Vadose Zone Journal tribute to the scientific legacy of Martinus van Genuchten, who championed the use of the osmotic potential for better quantification of crop salt tolerance at the macroscale and provided invaluable contributions to modeling soil salinity development and mitigation as a part of the global struggle for food security.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"50 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The osmotic potential of soil solutions in salt tolerance studies: Following M. Th. van Genuchten's innovation\",\"authors\":\"Y. Pachepsky, A. Yakirevich, A. A. Ponizovsky, N. Gummatov\",\"doi\":\"10.1002/vzj2.20299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The osmotic potential in soil solutions decreases as salinity increases, and plants cannot take up enough soil water. Therefore, the osmotic potential of soil solutions can serve as an important metric of plant growth conditions in regions affected by soil salinization. Measurements of osmotic potential are labor and time consuming. This work aimed to determine more readily available soil salinity metrics to estimate the osmotic potential in soil solutions. A model to compute the osmotic potential from soil solution composition was developed and validated with data from the U.S. states of Washington, Oregon, Colorado, and Idaho. The mean relative error was 7%. Then, this model was applied to 230 datasets on soil solutions from various salinity-affected regions of Eurasia. The correlation coefficient between logarithms of concentration of highly soluble (not including carbonates and sulfates of calcium and magnesium) in soil solutions at saturation and logarithms of osmotic potential values was above 0.99. The concentration of highly soluble salts in soil solution at saturation was chosen as the predictor of the osmotic potential. It was used to develop nomograms for evaluating the salinity-related yield loss for major field crops, vegetables, and fruits. This work is a part of the Vadose Zone Journal tribute to the scientific legacy of Martinus van Genuchten, who championed the use of the osmotic potential for better quantification of crop salt tolerance at the macroscale and provided invaluable contributions to modeling soil salinity development and mitigation as a part of the global struggle for food security.\",\"PeriodicalId\":23594,\"journal\":{\"name\":\"Vadose Zone Journal\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vadose Zone Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/vzj2.20299\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20299","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The osmotic potential of soil solutions in salt tolerance studies: Following M. Th. van Genuchten's innovation
The osmotic potential in soil solutions decreases as salinity increases, and plants cannot take up enough soil water. Therefore, the osmotic potential of soil solutions can serve as an important metric of plant growth conditions in regions affected by soil salinization. Measurements of osmotic potential are labor and time consuming. This work aimed to determine more readily available soil salinity metrics to estimate the osmotic potential in soil solutions. A model to compute the osmotic potential from soil solution composition was developed and validated with data from the U.S. states of Washington, Oregon, Colorado, and Idaho. The mean relative error was 7%. Then, this model was applied to 230 datasets on soil solutions from various salinity-affected regions of Eurasia. The correlation coefficient between logarithms of concentration of highly soluble (not including carbonates and sulfates of calcium and magnesium) in soil solutions at saturation and logarithms of osmotic potential values was above 0.99. The concentration of highly soluble salts in soil solution at saturation was chosen as the predictor of the osmotic potential. It was used to develop nomograms for evaluating the salinity-related yield loss for major field crops, vegetables, and fruits. This work is a part of the Vadose Zone Journal tribute to the scientific legacy of Martinus van Genuchten, who championed the use of the osmotic potential for better quantification of crop salt tolerance at the macroscale and provided invaluable contributions to modeling soil salinity development and mitigation as a part of the global struggle for food security.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.