最小能量路径的稳定性

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Xuanyu Liu, Huajie Chen, Christoph Ortner
{"title":"最小能量路径的稳定性","authors":"Xuanyu Liu, Huajie Chen, Christoph Ortner","doi":"10.1007/s00211-023-01391-7","DOIUrl":null,"url":null,"abstract":"<p>The minimum energy path (MEP) is the most probable transition path that connects two equilibrium states of a potential energy landscape. It has been widely used to study transition mechanisms as well as transition rates in the fields of chemistry, physics, and materials science. In this paper, we derive a novel result establishing the stability of MEPs under perturbations of the energy landscape. The result also represents a crucial step towards studying the convergence of various numerical approximations of MEPs, such as the nudged elastic band and string methods.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"75 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of the minimum energy path\",\"authors\":\"Xuanyu Liu, Huajie Chen, Christoph Ortner\",\"doi\":\"10.1007/s00211-023-01391-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The minimum energy path (MEP) is the most probable transition path that connects two equilibrium states of a potential energy landscape. It has been widely used to study transition mechanisms as well as transition rates in the fields of chemistry, physics, and materials science. In this paper, we derive a novel result establishing the stability of MEPs under perturbations of the energy landscape. The result also represents a crucial step towards studying the convergence of various numerical approximations of MEPs, such as the nudged elastic band and string methods.</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01391-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01391-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

最小能量路径(MEP)是连接势能图中两个平衡态的最可能的过渡路径。在化学、物理学和材料科学领域,它被广泛用于研究过渡机制和过渡速率。在本文中,我们推导出一个新结果,确定了 MEP 在能量景观扰动下的稳定性。这一结果也为研究 MEPs 的各种数值近似方法(如裸弹性带法和弦法等)的收敛性迈出了关键的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stability of the minimum energy path

Stability of the minimum energy path

The minimum energy path (MEP) is the most probable transition path that connects two equilibrium states of a potential energy landscape. It has been widely used to study transition mechanisms as well as transition rates in the fields of chemistry, physics, and materials science. In this paper, we derive a novel result establishing the stability of MEPs under perturbations of the energy landscape. The result also represents a crucial step towards studying the convergence of various numerical approximations of MEPs, such as the nudged elastic band and string methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信