{"title":"最小能量路径的稳定性","authors":"Xuanyu Liu, Huajie Chen, Christoph Ortner","doi":"10.1007/s00211-023-01391-7","DOIUrl":null,"url":null,"abstract":"<p>The minimum energy path (MEP) is the most probable transition path that connects two equilibrium states of a potential energy landscape. It has been widely used to study transition mechanisms as well as transition rates in the fields of chemistry, physics, and materials science. In this paper, we derive a novel result establishing the stability of MEPs under perturbations of the energy landscape. The result also represents a crucial step towards studying the convergence of various numerical approximations of MEPs, such as the nudged elastic band and string methods.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"75 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of the minimum energy path\",\"authors\":\"Xuanyu Liu, Huajie Chen, Christoph Ortner\",\"doi\":\"10.1007/s00211-023-01391-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The minimum energy path (MEP) is the most probable transition path that connects two equilibrium states of a potential energy landscape. It has been widely used to study transition mechanisms as well as transition rates in the fields of chemistry, physics, and materials science. In this paper, we derive a novel result establishing the stability of MEPs under perturbations of the energy landscape. The result also represents a crucial step towards studying the convergence of various numerical approximations of MEPs, such as the nudged elastic band and string methods.</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01391-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01391-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The minimum energy path (MEP) is the most probable transition path that connects two equilibrium states of a potential energy landscape. It has been widely used to study transition mechanisms as well as transition rates in the fields of chemistry, physics, and materials science. In this paper, we derive a novel result establishing the stability of MEPs under perturbations of the energy landscape. The result also represents a crucial step towards studying the convergence of various numerical approximations of MEPs, such as the nudged elastic band and string methods.
期刊介绍:
Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers:
1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis)
2. Optimization and Control Theory
3. Mathematical Modeling
4. The mathematical aspects of Scientific Computing