{"title":"纳尔逊的 \"核 \"与 \"核\":超越不可逆性的扭曲构造","authors":"","doi":"10.1007/s11225-023-10088-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Recent work by Busaniche, Galatos and Marcos introduced a very general twist construction, based on the notion of <em>conucleus</em>, which subsumes most existing approaches. In the present paper we extend this framework one step further, so as to allow us to construct and represent algebras which possess a negation that is not necessarily involutive. Our aim is to capture the main properties of the largest class that admits such a representation, as well as to be able to recover the well-known cases—such as <em>(quasi-)Nelson algebras</em> and <em>(quasi-)N4-lattices</em>—as particular instances of the general construction. We pursue two approaches, one that directly generalizes the classical Rasiowa construction for Nelson algebras, and an alternative one that allows us to study twist-algebras within the theory of residuated lattices.</p>","PeriodicalId":48979,"journal":{"name":"Studia Logica","volume":"152 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nelson Conuclei and Nuclei: The Twist Construction Beyond Involutivity\",\"authors\":\"\",\"doi\":\"10.1007/s11225-023-10088-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Recent work by Busaniche, Galatos and Marcos introduced a very general twist construction, based on the notion of <em>conucleus</em>, which subsumes most existing approaches. In the present paper we extend this framework one step further, so as to allow us to construct and represent algebras which possess a negation that is not necessarily involutive. Our aim is to capture the main properties of the largest class that admits such a representation, as well as to be able to recover the well-known cases—such as <em>(quasi-)Nelson algebras</em> and <em>(quasi-)N4-lattices</em>—as particular instances of the general construction. We pursue two approaches, one that directly generalizes the classical Rasiowa construction for Nelson algebras, and an alternative one that allows us to study twist-algebras within the theory of residuated lattices.</p>\",\"PeriodicalId\":48979,\"journal\":{\"name\":\"Studia Logica\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Logica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-023-10088-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Logica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10088-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Nelson Conuclei and Nuclei: The Twist Construction Beyond Involutivity
Abstract
Recent work by Busaniche, Galatos and Marcos introduced a very general twist construction, based on the notion of conucleus, which subsumes most existing approaches. In the present paper we extend this framework one step further, so as to allow us to construct and represent algebras which possess a negation that is not necessarily involutive. Our aim is to capture the main properties of the largest class that admits such a representation, as well as to be able to recover the well-known cases—such as (quasi-)Nelson algebras and (quasi-)N4-lattices—as particular instances of the general construction. We pursue two approaches, one that directly generalizes the classical Rasiowa construction for Nelson algebras, and an alternative one that allows us to study twist-algebras within the theory of residuated lattices.
期刊介绍:
The leading idea of Lvov-Warsaw School of Logic, Philosophy and Mathematics was to investigate philosophical problems by means of rigorous methods of mathematics. Evidence of the great success the School experienced is the fact that it has become generally recognized as Polish Style Logic. Today Polish Style Logic is no longer exclusively a Polish speciality. It is represented by numerous logicians, mathematicians and philosophers from research centers all over the world.