不定四芒星的相对属界

IF 1.3 2区 数学 Q1 MATHEMATICS
Ciprian Manolescu, Marco Marengon, Lisa Piccirillo
{"title":"不定四芒星的相对属界","authors":"Ciprian Manolescu, Marco Marengon, Lisa Piccirillo","doi":"10.1007/s00208-023-02787-4","DOIUrl":null,"url":null,"abstract":"<p>Given a closed four-manifold <i>X</i> with an indefinite intersection form, we consider smoothly embedded surfaces in <span>\\(X {\\setminus } \\smash {\\mathring{B}^4}\\)</span>, with boundary a knot <span>\\(K \\subset S^3\\)</span>. We give several methods to bound the genus of such surfaces in a fixed homology class. Our tools include adjunction inequalities and the <span>\\(10/8 + 4\\)</span> theorem. In particular, we present obstructions to a knot being H-slice (that is, bounding a null-homologous disk) in a four-manifold and show that the set of H-slice knots can detect exotic smooth structures on closed 4-manifolds.\n</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"263 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative genus bounds in indefinite four-manifolds\",\"authors\":\"Ciprian Manolescu, Marco Marengon, Lisa Piccirillo\",\"doi\":\"10.1007/s00208-023-02787-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a closed four-manifold <i>X</i> with an indefinite intersection form, we consider smoothly embedded surfaces in <span>\\\\(X {\\\\setminus } \\\\smash {\\\\mathring{B}^4}\\\\)</span>, with boundary a knot <span>\\\\(K \\\\subset S^3\\\\)</span>. We give several methods to bound the genus of such surfaces in a fixed homology class. Our tools include adjunction inequalities and the <span>\\\\(10/8 + 4\\\\)</span> theorem. In particular, we present obstructions to a knot being H-slice (that is, bounding a null-homologous disk) in a four-manifold and show that the set of H-slice knots can detect exotic smooth structures on closed 4-manifolds.\\n</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"263 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-023-02787-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-023-02787-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个具有不确定交集形式的封闭四芒星 X,我们考虑在 \(X {setminus } \smash {\mathring{B}^4}\) 中平滑嵌入的曲面,其边界是一个结 \(K \subset S^3\) 。我们给出了几种方法来约束这类曲面在固定同调类中的属。我们的工具包括邻接不等式和(10/8 + 4)定理。特别是,我们提出了一个结在四芒星中成为H-slice(即界于一个空同源盘)的障碍,并证明H-slice结的集合可以探测封闭四芒星上的奇异光滑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Relative genus bounds in indefinite four-manifolds

Relative genus bounds in indefinite four-manifolds

Given a closed four-manifold X with an indefinite intersection form, we consider smoothly embedded surfaces in \(X {\setminus } \smash {\mathring{B}^4}\), with boundary a knot \(K \subset S^3\). We give several methods to bound the genus of such surfaces in a fixed homology class. Our tools include adjunction inequalities and the \(10/8 + 4\) theorem. In particular, we present obstructions to a knot being H-slice (that is, bounding a null-homologous disk) in a four-manifold and show that the set of H-slice knots can detect exotic smooth structures on closed 4-manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信