利用生物炭和海泡石的组合处理方法对受镉污染的弱碱性土壤进行钝化修复

IF 4.6 2区 环境科学与生态学 Q1 ECOLOGY
Yuxin Zhang, Shan Gao, Hongtao Jia, Tao Sun, Shunan Zheng, Shihang Wu, Yuebing Sun
{"title":"利用生物炭和海泡石的组合处理方法对受镉污染的弱碱性土壤进行钝化修复","authors":"Yuxin Zhang, Shan Gao, Hongtao Jia, Tao Sun, Shunan Zheng, Shihang Wu, Yuebing Sun","doi":"10.1186/s13717-023-00469-2","DOIUrl":null,"url":null,"abstract":"Cadmium (Cd) pollution in agricultural soils has become a priority environmental concern globally. A reasonable application of passivators is critical to address the problem. In this study, we examined the remediation effects of rice husk biochar (rBC) and sepiolite (Sep) as single and combined (rBC + Sep) treatments on Cd pollution in a weakly alkaline soil using three maize cultivars (Liyu 16, Zhengdan 958, and Sanbei 218) as test crops. We also explained the mechanisms involved in the remediation effects. The pseudo-second-order kinetic equation and Langmuir model could well describe the adsorption process of rBC + Sep for Cd2+. Compared with the control treatment (CK), soil available Cd concentration decreased by 29.51–36.34% under rBC + Sep treatment (p< 0.05) and the Cd concentrations in maize grains of Liyu 16, Zhengdan 958, and Sanbei 218 decreased by 38.08–47.85%, 37.25–45.61%, and 33.96–46.15%, respectively (p< 0.05). Following passivation treatment, soil available Cd concentration decreased and gradually changed from the exchangeable and carbonate binding forms to the Fe/Mn oxide and residual forms. The bioconcentration factors of Liyu 16 (0.05–0.09) and Sanbei 218 (0.05–0.09) were lower than those of Zhengdan 958 (0.07–0.13). In addition, rBC +Sep treatment increased soil pH and soil electrical conductivity, but the differences were not significant (p> 0.05). The application of 0.2% rBC + 0.5% Sep composite passivation material to weakly alkaline Cd-contaminated soil can effectively reduce the Cd concentration of soil and maize.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"254 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passivation remediation of weakly alkaline Cd-contaminated soils using combined treatments of biochar and sepiolite\",\"authors\":\"Yuxin Zhang, Shan Gao, Hongtao Jia, Tao Sun, Shunan Zheng, Shihang Wu, Yuebing Sun\",\"doi\":\"10.1186/s13717-023-00469-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cadmium (Cd) pollution in agricultural soils has become a priority environmental concern globally. A reasonable application of passivators is critical to address the problem. In this study, we examined the remediation effects of rice husk biochar (rBC) and sepiolite (Sep) as single and combined (rBC + Sep) treatments on Cd pollution in a weakly alkaline soil using three maize cultivars (Liyu 16, Zhengdan 958, and Sanbei 218) as test crops. We also explained the mechanisms involved in the remediation effects. The pseudo-second-order kinetic equation and Langmuir model could well describe the adsorption process of rBC + Sep for Cd2+. Compared with the control treatment (CK), soil available Cd concentration decreased by 29.51–36.34% under rBC + Sep treatment (p< 0.05) and the Cd concentrations in maize grains of Liyu 16, Zhengdan 958, and Sanbei 218 decreased by 38.08–47.85%, 37.25–45.61%, and 33.96–46.15%, respectively (p< 0.05). Following passivation treatment, soil available Cd concentration decreased and gradually changed from the exchangeable and carbonate binding forms to the Fe/Mn oxide and residual forms. The bioconcentration factors of Liyu 16 (0.05–0.09) and Sanbei 218 (0.05–0.09) were lower than those of Zhengdan 958 (0.07–0.13). In addition, rBC +Sep treatment increased soil pH and soil electrical conductivity, but the differences were not significant (p> 0.05). The application of 0.2% rBC + 0.5% Sep composite passivation material to weakly alkaline Cd-contaminated soil can effectively reduce the Cd concentration of soil and maize.\",\"PeriodicalId\":11419,\"journal\":{\"name\":\"Ecological Processes\",\"volume\":\"254 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Processes\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s13717-023-00469-2\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Processes","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s13717-023-00469-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

农业土壤中的镉(Cd)污染已成为全球重点关注的环境问题。合理应用钝化剂对解决这一问题至关重要。在这项研究中,我们以三个玉米品种(蠡玉 16、郑单 958 和三北 218)为试验作物,考察了稻壳生物炭(rBC)和海泡石(Sep)作为单一处理和组合处理(rBC + Sep)对弱碱性土壤中镉污染的修复效果。我们还解释了修复效果的相关机制。假二阶动力学方程和 Langmuir 模型可以很好地描述 rBC + Sep 对 Cd2+ 的吸附过程。与对照处理(CK)相比,rBC + Sep 处理的土壤可利用镉浓度降低了 29.51%-36.34%(p 0.05)。在弱碱性镉污染土壤中施用 0.2% rBC + 0.5% Sep 复合钝化材料可有效降低土壤和玉米中的镉浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passivation remediation of weakly alkaline Cd-contaminated soils using combined treatments of biochar and sepiolite
Cadmium (Cd) pollution in agricultural soils has become a priority environmental concern globally. A reasonable application of passivators is critical to address the problem. In this study, we examined the remediation effects of rice husk biochar (rBC) and sepiolite (Sep) as single and combined (rBC + Sep) treatments on Cd pollution in a weakly alkaline soil using three maize cultivars (Liyu 16, Zhengdan 958, and Sanbei 218) as test crops. We also explained the mechanisms involved in the remediation effects. The pseudo-second-order kinetic equation and Langmuir model could well describe the adsorption process of rBC + Sep for Cd2+. Compared with the control treatment (CK), soil available Cd concentration decreased by 29.51–36.34% under rBC + Sep treatment (p< 0.05) and the Cd concentrations in maize grains of Liyu 16, Zhengdan 958, and Sanbei 218 decreased by 38.08–47.85%, 37.25–45.61%, and 33.96–46.15%, respectively (p< 0.05). Following passivation treatment, soil available Cd concentration decreased and gradually changed from the exchangeable and carbonate binding forms to the Fe/Mn oxide and residual forms. The bioconcentration factors of Liyu 16 (0.05–0.09) and Sanbei 218 (0.05–0.09) were lower than those of Zhengdan 958 (0.07–0.13). In addition, rBC +Sep treatment increased soil pH and soil electrical conductivity, but the differences were not significant (p> 0.05). The application of 0.2% rBC + 0.5% Sep composite passivation material to weakly alkaline Cd-contaminated soil can effectively reduce the Cd concentration of soil and maize.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Processes
Ecological Processes Environmental Science-Ecological Modeling
CiteScore
8.50
自引率
4.20%
发文量
64
审稿时长
13 weeks
期刊介绍: Ecological Processes is an international, peer-reviewed, open access journal devoted to quality publications in ecological studies with a focus on the underlying processes responsible for the dynamics and functions of ecological systems at multiple spatial and temporal scales. The journal welcomes manuscripts on techniques, approaches, concepts, models, reviews, syntheses, short communications and applied research for advancing our knowledge and capability toward sustainability of ecosystems and the environment. Integrations of ecological and socio-economic processes are strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信