{"title":"ResQNets:缓解量子神经网络贫瘠高原的剩余方法","authors":"Muhammad Kashif, Saif Al-Kuwari","doi":"10.1140/epjqt/s40507-023-00216-8","DOIUrl":null,"url":null,"abstract":"<div><p>The barren plateau problem in quantum neural networks (QNNs) is a significant challenge that hinders the practical success of QNNs. In this paper, we introduce residual quantum neural networks (ResQNets) as a solution to address this problem. ResQNets are inspired by classical residual neural networks and involve splitting the conventional QNN architecture into multiple quantum nodes, each containing its own parameterized quantum circuit, and introducing residual connections between these nodes. Our study demonstrates the efficacy of ResQNets by comparing their performance with that of conventional QNNs and plain quantum neural networks through multiple training experiments and analyzing the cost function landscapes. Our results show that the incorporation of residual connections results in improved training performance. Therefore, we conclude that ResQNets offer a promising solution to overcome the barren plateau problem in QNNs and provide a potential direction for future research in the field of quantum machine learning.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00216-8","citationCount":"0","resultStr":"{\"title\":\"ResQNets: a residual approach for mitigating barren plateaus in quantum neural networks\",\"authors\":\"Muhammad Kashif, Saif Al-Kuwari\",\"doi\":\"10.1140/epjqt/s40507-023-00216-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The barren plateau problem in quantum neural networks (QNNs) is a significant challenge that hinders the practical success of QNNs. In this paper, we introduce residual quantum neural networks (ResQNets) as a solution to address this problem. ResQNets are inspired by classical residual neural networks and involve splitting the conventional QNN architecture into multiple quantum nodes, each containing its own parameterized quantum circuit, and introducing residual connections between these nodes. Our study demonstrates the efficacy of ResQNets by comparing their performance with that of conventional QNNs and plain quantum neural networks through multiple training experiments and analyzing the cost function landscapes. Our results show that the incorporation of residual connections results in improved training performance. Therefore, we conclude that ResQNets offer a promising solution to overcome the barren plateau problem in QNNs and provide a potential direction for future research in the field of quantum machine learning.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00216-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-023-00216-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00216-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
ResQNets: a residual approach for mitigating barren plateaus in quantum neural networks
The barren plateau problem in quantum neural networks (QNNs) is a significant challenge that hinders the practical success of QNNs. In this paper, we introduce residual quantum neural networks (ResQNets) as a solution to address this problem. ResQNets are inspired by classical residual neural networks and involve splitting the conventional QNN architecture into multiple quantum nodes, each containing its own parameterized quantum circuit, and introducing residual connections between these nodes. Our study demonstrates the efficacy of ResQNets by comparing their performance with that of conventional QNNs and plain quantum neural networks through multiple training experiments and analyzing the cost function landscapes. Our results show that the incorporation of residual connections results in improved training performance. Therefore, we conclude that ResQNets offer a promising solution to overcome the barren plateau problem in QNNs and provide a potential direction for future research in the field of quantum machine learning.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.