{"title":"实三次函数场除数类数的平均值","authors":"Yoonjin Lee, Jungyun Lee, Jinjoo Yoo","doi":"10.1515/math-2023-0160","DOIUrl":null,"url":null,"abstract":"We compute an asymptotic formula for the divisor class numbers of <jats:italic>real</jats:italic> cubic function fields <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>K</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mroot> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:mroot> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{K}_{m}=k\\left(\\sqrt[3]{m})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi mathvariant=\"double-struck\">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{{\\mathbb{F}}}_{q}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a finite field with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> </m:math> <jats:tex-math>q</jats:tex-math> </jats:alternatives> </jats:inline-formula> elements, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> <m:mo>≡</m:mo> <m:mn>1</m:mn> <m:mspace width=\"0.3em\" /> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mrow> <m:mi>mod</m:mi> </m:mrow> <m:mspace width=\"0.3em\" /> <m:mn>3</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>q\\equiv 1\\hspace{0.3em}\\left(\\mathrm{mod}\\hspace{0.3em}3)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> <m:mo>≔</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\"double-struck\">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>k:= {{\\mathbb{F}}}_{q}\\left(T)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the rational function field, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\"double-struck\">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>m\\in {{\\mathbb{F}}}_{q}\\left[T]</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a cube-free polynomial; in this case, the degree of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> </m:math> <jats:tex-math>m</jats:tex-math> </jats:alternatives> </jats:inline-formula> is divisible by 3. For computation of our asymptotic formula, we find the average value of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>L</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>χ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{| L\\left(s,\\chi )| }^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> evaluated at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>s=1</jats:tex-math> </jats:alternatives> </jats:inline-formula> when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>χ</m:mi> </m:math> <jats:tex-math>\\chi </jats:tex-math> </jats:alternatives> </jats:inline-formula> goes through the primitive cubic <jats:italic>even</jats:italic> Dirichlet characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi mathvariant=\"double-struck\">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\mathbb{F}}}_{q}\\left[T]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>L</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>χ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>L\\left(s,\\chi )</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the associated Dirichlet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_013.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>L</m:mi> </m:math> <jats:tex-math>L</jats:tex-math> </jats:alternatives> </jats:inline-formula>-function.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Average value of the divisor class numbers of real cubic function fields\",\"authors\":\"Yoonjin Lee, Jungyun Lee, Jinjoo Yoo\",\"doi\":\"10.1515/math-2023-0160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute an asymptotic formula for the divisor class numbers of <jats:italic>real</jats:italic> cubic function fields <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>K</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mroot> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:mroot> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{K}_{m}=k\\\\left(\\\\sqrt[3]{m})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{{\\\\mathbb{F}}}_{q}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a finite field with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>q</m:mi> </m:math> <jats:tex-math>q</jats:tex-math> </jats:alternatives> </jats:inline-formula> elements, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>q</m:mi> <m:mo>≡</m:mo> <m:mn>1</m:mn> <m:mspace width=\\\"0.3em\\\" /> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mrow> <m:mi>mod</m:mi> </m:mrow> <m:mspace width=\\\"0.3em\\\" /> <m:mn>3</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>q\\\\equiv 1\\\\hspace{0.3em}\\\\left(\\\\mathrm{mod}\\\\hspace{0.3em}3)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> <m:mo>≔</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>k:= {{\\\\mathbb{F}}}_{q}\\\\left(T)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the rational function field, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>m</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>m\\\\in {{\\\\mathbb{F}}}_{q}\\\\left[T]</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a cube-free polynomial; in this case, the degree of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>m</m:mi> </m:math> <jats:tex-math>m</jats:tex-math> </jats:alternatives> </jats:inline-formula> is divisible by 3. For computation of our asymptotic formula, we find the average value of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_008.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>L</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>χ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{| L\\\\left(s,\\\\chi )| }^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> evaluated at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_009.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>s=1</jats:tex-math> </jats:alternatives> </jats:inline-formula> when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_010.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>χ</m:mi> </m:math> <jats:tex-math>\\\\chi </jats:tex-math> </jats:alternatives> </jats:inline-formula> goes through the primitive cubic <jats:italic>even</jats:italic> Dirichlet characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_011.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\\\mathbb{F}}}_{q}\\\\left[T]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_012.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>L</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>χ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>L\\\\left(s,\\\\chi )</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the associated Dirichlet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0160_eq_013.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>L</m:mi> </m:math> <jats:tex-math>L</jats:tex-math> </jats:alternatives> </jats:inline-formula>-function.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0160\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0160","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们计算了实三次函数域 K m = k ( m 3 ) {K}_{m}=kleft(\sqrt[3]{m}) 的因子类数的渐近公式,其中 F q {{\mathbb{F}}}_{q} 是具有 q q 个元素的有限域,q ≡ 1 ( mod 3 ) q\equiv 1\hspace{0.3em}\left(\mathrm{mod}\hspace{0.3em}3) , k ≔ F q ( T ) k:= {{\mathbb{F}}}_{q}\left(T) 是有理函数域,并且 m ∈ F q [ T ] m\in {{\mathbb{F}}}_{q}\left[T] 是无立方多项式;在这种情况下,m m 的阶数可以被 3 整除。为了计算渐近公式,我们要找到 ∣ L ( s , χ ) ∣ 2 {| L\left(s. \chi )| }^^ 的平均值、\当 χ \chi 经过 F q [ T ] {{\mathbb{F}}}_{q}\left[T] 的原始立方偶数 Dirichlet 字符时,在 s = 1 s=1 处求值,其中 L ( s , χ ) L\left(s,\chi ) 是相关的 Dirichlet L L - 函数。
Average value of the divisor class numbers of real cubic function fields
We compute an asymptotic formula for the divisor class numbers of real cubic function fields Km=k(m3){K}_{m}=k\left(\sqrt[3]{m}), where Fq{{\mathbb{F}}}_{q} is a finite field with qq elements, q≡1(mod3)q\equiv 1\hspace{0.3em}\left(\mathrm{mod}\hspace{0.3em}3), k≔Fq(T)k:= {{\mathbb{F}}}_{q}\left(T) is the rational function field, and m∈Fq[T]m\in {{\mathbb{F}}}_{q}\left[T] is a cube-free polynomial; in this case, the degree of mm is divisible by 3. For computation of our asymptotic formula, we find the average value of ∣L(s,χ)∣2{| L\left(s,\chi )| }^{2} evaluated at s=1s=1 when χ\chi goes through the primitive cubic even Dirichlet characters of Fq[T]{{\mathbb{F}}}_{q}\left[T], where L(s,χ)L\left(s,\chi ) is the associated Dirichlet LL-function.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.