使用模块化算术的细分算法

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Ron Goldman
{"title":"使用模块化算术的细分算法","authors":"Ron Goldman","doi":"10.1016/j.cagd.2024.102267","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study the de Casteljau subdivision algorithm<span> for Bezier curves and the Lane-Riesenfeld algorithm for uniform B-spline curves over the integers </span></span><em>mod m</em>, where <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span> is an odd integer. We place the integers <em>mod m</em> evenly spaced around a unit circle so that the integer <em>k mod m</em> is located at the position on the unit circle at<span><span><span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>ki</mi><mo>/</mo><mi>m</mi></mrow></msup><mo>=</mo><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mi>π</mi><mo>/</mo><mi>m</mi><mo>)</mo></mrow><mo>+</mo><mi>i</mi><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mi>π</mi><mo>/</mo><mi>m</mi><mo>)</mo></mrow><mo>↔</mo><mrow><mo>(</mo><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mi>π</mi><mo>/</mo><mi>m</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mi>π</mi><mo>/</mo><mi>m</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>.</mo></mrow></math></span></span></span>Given a sequence of integers <span><math><mrow><mo>(</mo><mrow><msub><mi>s</mi><mn>0</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>s</mi><mi>m</mi></msub></mrow><mo>)</mo></mrow></math></span> <em>mod m</em>, we connect consecutive values <span><math><mrow><msub><mi>s</mi><mi>j</mi></msub><msub><mi>s</mi><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span> on the unit circle with straight line segments to form a <span><em>control polygon</em></span>. We show that if we start these subdivision procedures with the sequence <span><math><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></mrow><mo>)</mo></mrow></math></span> <em>mod m</em>, then the sequences generated by these recursive subdivision algorithms spawn control polygons consisting of the regular <em>m</em>-sided polygon and regular <em>m</em>-pointed stars that repeat with a period equal to the minimal integer <em>k</em> such that <span><math><mrow><msup><mrow><mn>2</mn></mrow><mi>k</mi></msup><mo>=</mo><mo>±</mo><mn>1</mn><mspace></mspace><mi>m</mi><mi>o</mi><mi>d</mi><mspace></mspace><mi>m</mi></mrow></math></span><span>. Moreover, these control polygons represent the eigenvectors of the associated subdivision matrices corresponding to the eigenvalue </span><span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><mi>m</mi><mi>o</mi><mi>d</mi><mspace></mspace><mi>m</mi><mo>.</mo></mrow></math></span> We go on to study the effects of these subdivision procedures on more general initial control polygons, and we show in particular that certain control polygons, including the orbits of regular <em>m</em>-sided polygons and the complete graphs of <em>m</em>-sided polygons, are fixed points of these subdivision procedures.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"108 ","pages":"Article 102267"},"PeriodicalIF":1.3000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subdivision algorithms with modular arithmetic\",\"authors\":\"Ron Goldman\",\"doi\":\"10.1016/j.cagd.2024.102267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We study the de Casteljau subdivision algorithm<span> for Bezier curves and the Lane-Riesenfeld algorithm for uniform B-spline curves over the integers </span></span><em>mod m</em>, where <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span> is an odd integer. We place the integers <em>mod m</em> evenly spaced around a unit circle so that the integer <em>k mod m</em> is located at the position on the unit circle at<span><span><span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>ki</mi><mo>/</mo><mi>m</mi></mrow></msup><mo>=</mo><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mi>π</mi><mo>/</mo><mi>m</mi><mo>)</mo></mrow><mo>+</mo><mi>i</mi><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mi>π</mi><mo>/</mo><mi>m</mi><mo>)</mo></mrow><mo>↔</mo><mrow><mo>(</mo><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mi>π</mi><mo>/</mo><mi>m</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mi>π</mi><mo>/</mo><mi>m</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>.</mo></mrow></math></span></span></span>Given a sequence of integers <span><math><mrow><mo>(</mo><mrow><msub><mi>s</mi><mn>0</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>s</mi><mi>m</mi></msub></mrow><mo>)</mo></mrow></math></span> <em>mod m</em>, we connect consecutive values <span><math><mrow><msub><mi>s</mi><mi>j</mi></msub><msub><mi>s</mi><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span> on the unit circle with straight line segments to form a <span><em>control polygon</em></span>. We show that if we start these subdivision procedures with the sequence <span><math><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></mrow><mo>)</mo></mrow></math></span> <em>mod m</em>, then the sequences generated by these recursive subdivision algorithms spawn control polygons consisting of the regular <em>m</em>-sided polygon and regular <em>m</em>-pointed stars that repeat with a period equal to the minimal integer <em>k</em> such that <span><math><mrow><msup><mrow><mn>2</mn></mrow><mi>k</mi></msup><mo>=</mo><mo>±</mo><mn>1</mn><mspace></mspace><mi>m</mi><mi>o</mi><mi>d</mi><mspace></mspace><mi>m</mi></mrow></math></span><span>. Moreover, these control polygons represent the eigenvectors of the associated subdivision matrices corresponding to the eigenvalue </span><span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><mi>m</mi><mi>o</mi><mi>d</mi><mspace></mspace><mi>m</mi><mo>.</mo></mrow></math></span> We go on to study the effects of these subdivision procedures on more general initial control polygons, and we show in particular that certain control polygons, including the orbits of regular <em>m</em>-sided polygons and the complete graphs of <em>m</em>-sided polygons, are fixed points of these subdivision procedures.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"108 \",\"pages\":\"Article 102267\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624000013\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000013","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了贝塞尔曲线的 de Casteljau 细分算法和整数 mod m(其中 m>2 为奇数)上均匀 B 样条曲线的 Lane-Riesenfeld 算法。我们将 mod m 整数均匀分布在一个单位圆周围,使 mod m 整数 k 位于单位圆上 e2πki/m=cos(2kπ/m)+isin(2kπ/m)↔(cos(2kπ/m),sin(2kπ/m)) 的位置。给定 mod m 整数序列 (s0,...,sm),我们用直线段连接单位圆上的连续值 sjsj+1 形成一个控制多边形。我们证明,如果以序列 (0,1,...,m) mod m 开始这些细分过程,那么这些递归细分算法生成的序列会产生由正多边形和正多星形组成的控制多边形,这些多边形的重复周期等于最小整数 k,即 2k=±1modm。此外,这些控制多边形代表了与特征值 2-1modm 相对应的相关细分矩阵的特征向量。我们将继续研究这些细分过程对更一般的初始控制多边形的影响,并特别说明某些控制多边形,包括规则 m 边多边形的轨道和 m 边多边形的完整图形,都是这些细分过程的定点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Subdivision algorithms with modular arithmetic

Subdivision algorithms with modular arithmetic

Subdivision algorithms with modular arithmetic

We study the de Casteljau subdivision algorithm for Bezier curves and the Lane-Riesenfeld algorithm for uniform B-spline curves over the integers mod m, where m>2 is an odd integer. We place the integers mod m evenly spaced around a unit circle so that the integer k mod m is located at the position on the unit circle ate2πki/m=cos(2kπ/m)+isin(2kπ/m)(cos(2kπ/m),sin(2kπ/m)).Given a sequence of integers (s0,,sm) mod m, we connect consecutive values sjsj+1 on the unit circle with straight line segments to form a control polygon. We show that if we start these subdivision procedures with the sequence (0,1,,m) mod m, then the sequences generated by these recursive subdivision algorithms spawn control polygons consisting of the regular m-sided polygon and regular m-pointed stars that repeat with a period equal to the minimal integer k such that 2k=±1modm. Moreover, these control polygons represent the eigenvectors of the associated subdivision matrices corresponding to the eigenvalue 21modm. We go on to study the effects of these subdivision procedures on more general initial control polygons, and we show in particular that certain control polygons, including the orbits of regular m-sided polygons and the complete graphs of m-sided polygons, are fixed points of these subdivision procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Aided Geometric Design
Computer Aided Geometric Design 工程技术-计算机:软件工程
CiteScore
3.50
自引率
13.30%
发文量
57
审稿时长
60 days
期刊介绍: The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following: -Mathematical and Geometric Foundations- Curve, Surface, and Volume generation- CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision- Industrial, medical, and scientific applications. The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信