一类两折鞍点抛物微分方程的存在性结果

Pub Date : 2024-01-09 DOI:10.1007/s10986-023-09616-w
{"title":"一类两折鞍点抛物微分方程的存在性结果","authors":"","doi":"10.1007/s10986-023-09616-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We propose and analyze an abstract framework to study the well-posedness for a family of linear degenerate parabolic augmentedmixed equations.We combine the theory for linear degenerate parabolic problems with results about stationary two-fold saddle point equations to deduce sufficient conditions for the existence and uniqueness of a solution for the problem. Finally, we show some applications of the developed theory through examples that come from <em>fluid dynamic</em> and <em>electromagnetic</em> problems.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence results for a class of two-fold saddle point parabolic differential equations\",\"authors\":\"\",\"doi\":\"10.1007/s10986-023-09616-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We propose and analyze an abstract framework to study the well-posedness for a family of linear degenerate parabolic augmentedmixed equations.We combine the theory for linear degenerate parabolic problems with results about stationary two-fold saddle point equations to deduce sufficient conditions for the existence and uniqueness of a solution for the problem. Finally, we show some applications of the developed theory through examples that come from <em>fluid dynamic</em> and <em>electromagnetic</em> problems.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-023-09616-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-023-09616-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们提出并分析了一个抽象框架,用于研究线性退化抛物线增强混合方程组的良好求解性。我们将线性退化抛物线问题的理论与有关静态二重鞍点方程的结果相结合,推导出该问题解的存在性和唯一性的充分条件。最后,我们通过流体动力学和电磁问题的实例展示了所开发理论的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Existence results for a class of two-fold saddle point parabolic differential equations

Abstract

We propose and analyze an abstract framework to study the well-posedness for a family of linear degenerate parabolic augmentedmixed equations.We combine the theory for linear degenerate parabolic problems with results about stationary two-fold saddle point equations to deduce sufficient conditions for the existence and uniqueness of a solution for the problem. Finally, we show some applications of the developed theory through examples that come from fluid dynamic and electromagnetic problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信