关于 Bar-Natan-van der Veen 的扰动高斯模型

Jorge Becerra
{"title":"关于 Bar-Natan-van der Veen 的扰动高斯模型","authors":"Jorge Becerra","doi":"10.1007/s13398-023-01536-1","DOIUrl":null,"url":null,"abstract":"<p>We elucidate further properties of the novel family of polynomial time knot polynomials devised by Bar-Natan and van der Veen based on the Gaussian calculus of generating series for noncommutative algebras. These polynomials determine all coloured Jones polynomials and the simplest of these is expected to coincide with the one-variable 2-loop polynomial. We prove a conjecture stating that half of these polynomials vanish and give concrete formulas for three of these knot polynomial invariants. We also study the behaviour of these polynomials under the connected sum of knots.</p>","PeriodicalId":21293,"journal":{"name":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","volume":"153 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Bar-Natan–van der Veen’s perturbed Gaussians\",\"authors\":\"Jorge Becerra\",\"doi\":\"10.1007/s13398-023-01536-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We elucidate further properties of the novel family of polynomial time knot polynomials devised by Bar-Natan and van der Veen based on the Gaussian calculus of generating series for noncommutative algebras. These polynomials determine all coloured Jones polynomials and the simplest of these is expected to coincide with the one-variable 2-loop polynomial. We prove a conjecture stating that half of these polynomials vanish and give concrete formulas for three of these knot polynomial invariants. We also study the behaviour of these polynomials under the connected sum of knots.</p>\",\"PeriodicalId\":21293,\"journal\":{\"name\":\"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-023-01536-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13398-023-01536-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们进一步阐明了巴尔-纳坦和范德维恩根据非交换代数的高斯生成数列微积分设计的多项式时间结多项式新家族的性质。这些多项式决定了所有彩色琼斯多项式,其中最简单的多项式有望与单变量 2 环多项式重合。我们证明了这些多项式中有一半消失的猜想,并给出了其中三个结多项式不变式的具体公式。我们还研究了这些多项式在结的连接和下的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Bar-Natan–van der Veen’s perturbed Gaussians

On Bar-Natan–van der Veen’s perturbed Gaussians

We elucidate further properties of the novel family of polynomial time knot polynomials devised by Bar-Natan and van der Veen based on the Gaussian calculus of generating series for noncommutative algebras. These polynomials determine all coloured Jones polynomials and the simplest of these is expected to coincide with the one-variable 2-loop polynomial. We prove a conjecture stating that half of these polynomials vanish and give concrete formulas for three of these knot polynomial invariants. We also study the behaviour of these polynomials under the connected sum of knots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信