{"title":"大相互作用极限下的随机场伊辛链域壁结构","authors":"Orphée Collin, Giambattista Giacomin, Yueyun Hu","doi":"arxiv-2401.03927","DOIUrl":null,"url":null,"abstract":"We study the configurations of the nearest neighbor Ising ferromagnetic chain\nwith IID centered and square integrable external random field in the limit in\nwhich the pairwise interaction tends to infinity. The available free energy\nestimates for this model show a strong form of disorder relevance, i.e., a\nstrong effect of disorder on the free energy behavior, and our aim is to make\nexplicit how the disorder affects the spin configurations. We give a\nquantitative estimate that shows that the infinite volume spin configurations\nare close to one explicit disorder dependent configuration when the interaction\nis large. Our results confirm the predictions on this model obtained in D. S.\nFisher, P. Le Doussal and C. Monthus (Phys. Rev. E 2001) by applying the\nrenormalization group method introduced by D. S. Fisher (Phys. Rev. B 1995).","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The random field Ising chain domain-wall structure in the large interaction limit\",\"authors\":\"Orphée Collin, Giambattista Giacomin, Yueyun Hu\",\"doi\":\"arxiv-2401.03927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the configurations of the nearest neighbor Ising ferromagnetic chain\\nwith IID centered and square integrable external random field in the limit in\\nwhich the pairwise interaction tends to infinity. The available free energy\\nestimates for this model show a strong form of disorder relevance, i.e., a\\nstrong effect of disorder on the free energy behavior, and our aim is to make\\nexplicit how the disorder affects the spin configurations. We give a\\nquantitative estimate that shows that the infinite volume spin configurations\\nare close to one explicit disorder dependent configuration when the interaction\\nis large. Our results confirm the predictions on this model obtained in D. S.\\nFisher, P. Le Doussal and C. Monthus (Phys. Rev. E 2001) by applying the\\nrenormalization group method introduced by D. S. Fisher (Phys. Rev. B 1995).\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.03927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.03927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了在成对相互作用趋于无穷大的极限条件下,具有以 IID 为中心、可平方积分的外部随机场的近邻 Ising 铁磁链的构型。该模型的现有自由能估计值显示出强烈的无序相关性,即无序对自由能行为的强烈影响,我们的目的是明确无序如何影响自旋构型。我们给出的定量估计表明,当相互作用较大时,无限体积自旋构型接近于一个明确的无序相关构型。我们的结果证实了 D. S. Fisher、P. Le Doussal 和 C. Monthus(Phys. Rev. E 2001)运用 D. S. Fisher(Phys. Rev. B 1995)引入的正则化群方法对该模型的预测。
The random field Ising chain domain-wall structure in the large interaction limit
We study the configurations of the nearest neighbor Ising ferromagnetic chain
with IID centered and square integrable external random field in the limit in
which the pairwise interaction tends to infinity. The available free energy
estimates for this model show a strong form of disorder relevance, i.e., a
strong effect of disorder on the free energy behavior, and our aim is to make
explicit how the disorder affects the spin configurations. We give a
quantitative estimate that shows that the infinite volume spin configurations
are close to one explicit disorder dependent configuration when the interaction
is large. Our results confirm the predictions on this model obtained in D. S.
Fisher, P. Le Doussal and C. Monthus (Phys. Rev. E 2001) by applying the
renormalization group method introduced by D. S. Fisher (Phys. Rev. B 1995).