覆盖少边或多边的 FPT 近似算法和亚指数算法

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Fedor V. Fomin , Petr A. Golovach , Tanmay Inamdar , Tomohiro Koana
{"title":"覆盖少边或多边的 FPT 近似算法和亚指数算法","authors":"Fedor V. Fomin ,&nbsp;Petr A. Golovach ,&nbsp;Tanmay Inamdar ,&nbsp;Tomohiro Koana","doi":"10.1016/j.ipl.2024.106471","DOIUrl":null,"url":null,"abstract":"<div><p>We study the <em>α</em><span>-Fixed Cardinality Graph Partitioning (</span><em>α</em><span>-FCGP)</span> problem, the generic local graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we are given a graph <em>G</em>, two numbers <span><math><mi>k</mi><mo>,</mo><mi>p</mi></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, the question is whether there is a set <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi></math></span> of size <em>k</em> with a specified coverage function <span><math><msub><mrow><mi>cov</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> at least <em>p</em> (or at most <em>p</em> for the minimization version). The coverage function <span><math><msub><mrow><mi>cov</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> counts edges with exactly one endpoint in <em>S</em> with weight <em>α</em> and edges with both endpoints in <em>S</em> with weight <span><math><mn>1</mn><mo>−</mo><mi>α</mi></math></span>. <em>α</em>-FCGP generalizes a number of fundamental graph problems such as <span>Densest</span> <em>k</em><span>-Subgraph</span>, <span>Max</span> <em>k</em><span>-Vertex Cover</span>, and <span>Max</span> <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo></math></span><span>-Cut</span>.</p><p>A natural question in the study of <em>α</em>-FCGP is whether the algorithmic results known for its special cases, like <span>Max</span> <em>k</em><span>-Vertex Cover</span>, could be extended to more general settings. One of the simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019] and subexponential algorithms [Fomin et al. IPL 2011] for <span>Max</span> <em>k</em><span>-Vertex Cover</span> is based on the greedy vertex degree orderings. The main insight of our work is that the idea of greedy vertex degree ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> and subexponential-time algorithms for the problem on apex-minor free graphs for maximization with <span><math><mi>α</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span> and minimization with <span><math><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span>.<span><sup>4</sup></span></p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"185 ","pages":"Article 106471"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020019024000012/pdfft?md5=dbf0e44d15c4aa0bfc53c54ec0a43a71&pid=1-s2.0-S0020019024000012-main.pdf","citationCount":"0","resultStr":"{\"title\":\"FPT approximation and subexponential algorithms for covering few or many edges\",\"authors\":\"Fedor V. Fomin ,&nbsp;Petr A. Golovach ,&nbsp;Tanmay Inamdar ,&nbsp;Tomohiro Koana\",\"doi\":\"10.1016/j.ipl.2024.106471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the <em>α</em><span>-Fixed Cardinality Graph Partitioning (</span><em>α</em><span>-FCGP)</span> problem, the generic local graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we are given a graph <em>G</em>, two numbers <span><math><mi>k</mi><mo>,</mo><mi>p</mi></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, the question is whether there is a set <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi></math></span> of size <em>k</em> with a specified coverage function <span><math><msub><mrow><mi>cov</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> at least <em>p</em> (or at most <em>p</em> for the minimization version). The coverage function <span><math><msub><mrow><mi>cov</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> counts edges with exactly one endpoint in <em>S</em> with weight <em>α</em> and edges with both endpoints in <em>S</em> with weight <span><math><mn>1</mn><mo>−</mo><mi>α</mi></math></span>. <em>α</em>-FCGP generalizes a number of fundamental graph problems such as <span>Densest</span> <em>k</em><span>-Subgraph</span>, <span>Max</span> <em>k</em><span>-Vertex Cover</span>, and <span>Max</span> <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo></math></span><span>-Cut</span>.</p><p>A natural question in the study of <em>α</em>-FCGP is whether the algorithmic results known for its special cases, like <span>Max</span> <em>k</em><span>-Vertex Cover</span>, could be extended to more general settings. One of the simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019] and subexponential algorithms [Fomin et al. IPL 2011] for <span>Max</span> <em>k</em><span>-Vertex Cover</span> is based on the greedy vertex degree orderings. The main insight of our work is that the idea of greedy vertex degree ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> and subexponential-time algorithms for the problem on apex-minor free graphs for maximization with <span><math><mi>α</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span> and minimization with <span><math><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span>.<span><sup>4</sup></span></p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"185 \",\"pages\":\"Article 106471\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000012/pdfft?md5=dbf0e44d15c4aa0bfc53c54ec0a43a71&pid=1-s2.0-S0020019024000012-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000012\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是 α-Fixed Cardinality Graph Partitioning (α-FCGP)问题,这是 Bonnet 等人[Algorithmica 2015]提出的通用局部图划分问题。在这个问题中,我们给定了一个图 G、两个数字 k,p 和 0≤α≤1,问题是是否存在一个大小为 k 的集合 S⊆V,其指定的覆盖函数 covα(S) 至少为 p(或对于最小化版本来说最多为 p)。覆盖函数 covα(⋅)计算的是 S 中恰好有一个端点的边,权重为 α;S 中两个端点都有的边,权重为 1-α。α-FCGP概括了许多基本图问题,如最密k子图、最大k顶点覆盖和最大(k,n-k)切割。研究α-FCGP的一个自然问题是,是否可以将其特殊情况(如最大k顶点覆盖)下的算法结果扩展到更一般的情况。获得 Max k-Vertex Cover 的参数化近似 [Manurangsi, SOSA 2019] 和亚指数算法 [Fomin et al. IPL 2011] 的简单而强大的方法之一是基于贪婪顶点度排序。我们工作的主要启示是,贪婪顶点度排序的思想可用于设计α>0 的固定参数近似方案(FPT-AS),以及顶点最小自由图上α>1/3 的最大化和α<1/3 的最小化问题的亚指数时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPT approximation and subexponential algorithms for covering few or many edges

We study the α-Fixed Cardinality Graph Partitioning (α-FCGP) problem, the generic local graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we are given a graph G, two numbers k,p and 0α1, the question is whether there is a set SV of size k with a specified coverage function covα(S) at least p (or at most p for the minimization version). The coverage function covα() counts edges with exactly one endpoint in S with weight α and edges with both endpoints in S with weight 1α. α-FCGP generalizes a number of fundamental graph problems such as Densest k-Subgraph, Max k-Vertex Cover, and Max (k,nk)-Cut.

A natural question in the study of α-FCGP is whether the algorithmic results known for its special cases, like Max k-Vertex Cover, could be extended to more general settings. One of the simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019] and subexponential algorithms [Fomin et al. IPL 2011] for Max k-Vertex Cover is based on the greedy vertex degree orderings. The main insight of our work is that the idea of greedy vertex degree ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for α>0 and subexponential-time algorithms for the problem on apex-minor free graphs for maximization with α>1/3 and minimization with α<1/3.4

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信