分解微笑:时间变化法

Liexin Cheng, Xue Cheng
{"title":"分解微笑:时间变化法","authors":"Liexin Cheng, Xue Cheng","doi":"arxiv-2401.03776","DOIUrl":null,"url":null,"abstract":"We develop a novel time-change approach to study the shape of implied\nvolatility smiles. The method is applicable to common semimartingale models,\nincluding jump-diffusion, rough volatility and infinite activity models. We\napproximate the at-the-money skew and curvature with an improved moment-based\nformula. The moments are further explicitly computed under a time change\nframework. The limiting skew and curvature for several models are considered.\nWe also test the accuracy of the short-term approximation results on models via\nnumerical methods and on empirical data. Finally, we apply the method to the\ncalibration problem.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposing Smiles: A Time Change Approach\",\"authors\":\"Liexin Cheng, Xue Cheng\",\"doi\":\"arxiv-2401.03776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a novel time-change approach to study the shape of implied\\nvolatility smiles. The method is applicable to common semimartingale models,\\nincluding jump-diffusion, rough volatility and infinite activity models. We\\napproximate the at-the-money skew and curvature with an improved moment-based\\nformula. The moments are further explicitly computed under a time change\\nframework. The limiting skew and curvature for several models are considered.\\nWe also test the accuracy of the short-term approximation results on models via\\nnumerical methods and on empirical data. Finally, we apply the method to the\\ncalibration problem.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.03776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.03776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种新颖的时间变化方法来研究隐含波动率微笑的形状。该方法适用于常见的半马尔廷模型,包括跳跃扩散模型、粗略波动率模型和无限活动模型。我们用改进的基于矩的公式来近似计算价位偏斜和曲率。在时间变化框架下,我们进一步明确计算了矩。我们还利用数值方法和经验数据检验了模型短期近似结果的准确性。最后,我们将该方法应用于校准问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposing Smiles: A Time Change Approach
We develop a novel time-change approach to study the shape of implied volatility smiles. The method is applicable to common semimartingale models, including jump-diffusion, rough volatility and infinite activity models. We approximate the at-the-money skew and curvature with an improved moment-based formula. The moments are further explicitly computed under a time change framework. The limiting skew and curvature for several models are considered. We also test the accuracy of the short-term approximation results on models via numerical methods and on empirical data. Finally, we apply the method to the calibration problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信