窄带欧氏 TSP

Pub Date : 2024-01-08 DOI:10.1007/s00454-023-00609-7
Henk Alkema, Mark de Berg, Remco van der Hofstad, Sándor Kisfaludi-Bak
{"title":"窄带欧氏 TSP","authors":"Henk Alkema, Mark de Berg, Remco van der Hofstad, Sándor Kisfaludi-Bak","doi":"10.1007/s00454-023-00609-7","DOIUrl":null,"url":null,"abstract":"<p>We investigate how the complexity of <span>Euclidean TSP</span> for point sets <i>P</i> inside the strip <span>\\((-\\infty ,+\\infty )\\times [0,\\delta ]\\)</span> depends on the strip width <span>\\(\\delta \\)</span>. We obtain two main results.</p><ul>\n<li>\n<p>For the case where the points have distinct integer <i>x</i>-coordinates, we prove that a shortest bitonic tour (which can be computed in <span>\\(O(n\\log ^2 n)\\)</span> time using an existing algorithm) is guaranteed to be a shortest tour overall when <span>\\(\\delta \\leqslant 2\\sqrt{2}\\)</span>, a bound which is best possible.</p>\n</li>\n<li>\n<p>We present an algorithm that is fixed-parameter tractable with respect to <span>\\(\\delta \\)</span>. Our algorithm has running time <span>\\(2^{O(\\sqrt{\\delta })} n + O(\\delta ^2 n^2)\\)</span> for sparse point sets, where each <span>\\(1\\times \\delta \\)</span> rectangle inside the strip contains <i>O</i>(1) points. For random point sets, where the points are chosen uniformly at random from the rectangle <span>\\([0,n]\\times [0,\\delta ]\\)</span>, it has an expected running time of <span>\\(2^{O(\\sqrt{\\delta })} n\\)</span>. These results generalise to point sets <i>P</i> inside a hypercylinder of width <span>\\(\\delta \\)</span>. In this case, the factors <span>\\(2^{O(\\sqrt{\\delta })}\\)</span> become <span>\\(2^{O(\\delta ^{1-1/d})}\\)</span>.</p>\n</li>\n</ul>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euclidean TSP in Narrow Strips\",\"authors\":\"Henk Alkema, Mark de Berg, Remco van der Hofstad, Sándor Kisfaludi-Bak\",\"doi\":\"10.1007/s00454-023-00609-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate how the complexity of <span>Euclidean TSP</span> for point sets <i>P</i> inside the strip <span>\\\\((-\\\\infty ,+\\\\infty )\\\\times [0,\\\\delta ]\\\\)</span> depends on the strip width <span>\\\\(\\\\delta \\\\)</span>. We obtain two main results.</p><ul>\\n<li>\\n<p>For the case where the points have distinct integer <i>x</i>-coordinates, we prove that a shortest bitonic tour (which can be computed in <span>\\\\(O(n\\\\log ^2 n)\\\\)</span> time using an existing algorithm) is guaranteed to be a shortest tour overall when <span>\\\\(\\\\delta \\\\leqslant 2\\\\sqrt{2}\\\\)</span>, a bound which is best possible.</p>\\n</li>\\n<li>\\n<p>We present an algorithm that is fixed-parameter tractable with respect to <span>\\\\(\\\\delta \\\\)</span>. Our algorithm has running time <span>\\\\(2^{O(\\\\sqrt{\\\\delta })} n + O(\\\\delta ^2 n^2)\\\\)</span> for sparse point sets, where each <span>\\\\(1\\\\times \\\\delta \\\\)</span> rectangle inside the strip contains <i>O</i>(1) points. For random point sets, where the points are chosen uniformly at random from the rectangle <span>\\\\([0,n]\\\\times [0,\\\\delta ]\\\\)</span>, it has an expected running time of <span>\\\\(2^{O(\\\\sqrt{\\\\delta })} n\\\\)</span>. These results generalise to point sets <i>P</i> inside a hypercylinder of width <span>\\\\(\\\\delta \\\\)</span>. In this case, the factors <span>\\\\(2^{O(\\\\sqrt{\\\\delta })}\\\\)</span> become <span>\\\\(2^{O(\\\\delta ^{1-1/d})}\\\\)</span>.</p>\\n</li>\\n</ul>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00609-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00609-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了欧几里得TSP的复杂性如何取决于带宽((-\infty ,+\infty )\times [0,\delta])。对于点有不同的整数 x 坐标的情况,我们证明当 \(\delta leqslant 2\sqrt{2}\) 时,一个最短的 bitonic tour(可以用现有的算法在 \(O(n\log ^2 n)\) 时间内计算出来)保证是一个最短的总的 tour,这个约束是最好的。我们的算法对于稀疏点集的运行时间为(2^{O(\sqrt{\delta })} n + O(\delta ^2 n^2)),其中条带内的每\(1\times \delta \)个矩形包含O(1)个点。对于随机点集,即从矩形 \([0,n]\times [0,\delta ]\) 中均匀随机地选择点,它的预期运行时间为 \(2^{O(\sqrt{\delta })} n\) 。这些结果可以推广到宽度为 \(\delta \)的超圆柱体内部的点集 P。在这种情况下,因子 \(2^{O(\sqrt{\delta })}\) 变成了 \(2^{O(\delta ^{1-1/d})}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Euclidean TSP in Narrow Strips

分享
查看原文
Euclidean TSP in Narrow Strips

We investigate how the complexity of Euclidean TSP for point sets P inside the strip \((-\infty ,+\infty )\times [0,\delta ]\) depends on the strip width \(\delta \). We obtain two main results.

  • For the case where the points have distinct integer x-coordinates, we prove that a shortest bitonic tour (which can be computed in \(O(n\log ^2 n)\) time using an existing algorithm) is guaranteed to be a shortest tour overall when \(\delta \leqslant 2\sqrt{2}\), a bound which is best possible.

  • We present an algorithm that is fixed-parameter tractable with respect to \(\delta \). Our algorithm has running time \(2^{O(\sqrt{\delta })} n + O(\delta ^2 n^2)\) for sparse point sets, where each \(1\times \delta \) rectangle inside the strip contains O(1) points. For random point sets, where the points are chosen uniformly at random from the rectangle \([0,n]\times [0,\delta ]\), it has an expected running time of \(2^{O(\sqrt{\delta })} n\). These results generalise to point sets P inside a hypercylinder of width \(\delta \). In this case, the factors \(2^{O(\sqrt{\delta })}\) become \(2^{O(\delta ^{1-1/d})}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信