蜂窝连接无人飞行器的 3D 无线电地图重构和轨迹优化

Qiuhu Gong;Fahui Wu;Dingcheng Yang;Lin Xiao;Zemin Liu
{"title":"蜂窝连接无人飞行器的 3D 无线电地图重构和轨迹优化","authors":"Qiuhu Gong;Fahui Wu;Dingcheng Yang;Lin Xiao;Zemin Liu","doi":"10.23919/JCIN.2023.10387267","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative approach to address the trajectory optimization challenge for cellular-connected unmanned aerial vehicles (UAVs) operating in three-dimensional (3D) space. In most cases, optimizing UAV trajectories necessitates ensuring reliable network connectivity. However, achieving dependable connectivity in 3D space poses a significant challenge due to terrestrial base stations primarily designed for ground users. Additionally, UAVs possess network information only for the areas they have visited, with global network information being inaccessible. To address this issue, we propose a collaborative approach in which multiple UAVs create a global model of outage probability using federated learning, enabling more precise and effective trajectory design. Building upon the constructed global information, we conduct the trajectory design. Initially, we introduce A-star (A∗) algorithm for trajectory design in small-scale scenarios. Nevertheless, recognizing the limitations of A∗ algorithm in large-scale scenarios, we further introduce improved rapidly-exploring random trees (RRTs) algorithm for weighted path optimization. Simulation results are provided to validate the effectiveness of the proposed algorithms.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"8 4","pages":"357-368"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Radio Map Reconstruction and Trajectory Optimization for Cellular-Connected UAVs\",\"authors\":\"Qiuhu Gong;Fahui Wu;Dingcheng Yang;Lin Xiao;Zemin Liu\",\"doi\":\"10.23919/JCIN.2023.10387267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an innovative approach to address the trajectory optimization challenge for cellular-connected unmanned aerial vehicles (UAVs) operating in three-dimensional (3D) space. In most cases, optimizing UAV trajectories necessitates ensuring reliable network connectivity. However, achieving dependable connectivity in 3D space poses a significant challenge due to terrestrial base stations primarily designed for ground users. Additionally, UAVs possess network information only for the areas they have visited, with global network information being inaccessible. To address this issue, we propose a collaborative approach in which multiple UAVs create a global model of outage probability using federated learning, enabling more precise and effective trajectory design. Building upon the constructed global information, we conduct the trajectory design. Initially, we introduce A-star (A∗) algorithm for trajectory design in small-scale scenarios. Nevertheless, recognizing the limitations of A∗ algorithm in large-scale scenarios, we further introduce improved rapidly-exploring random trees (RRTs) algorithm for weighted path optimization. Simulation results are provided to validate the effectiveness of the proposed algorithms.\",\"PeriodicalId\":100766,\"journal\":{\"name\":\"Journal of Communications and Information Networks\",\"volume\":\"8 4\",\"pages\":\"357-368\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10387267/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10387267/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种创新方法,用于解决在三维(3D)空间中运行的蜂窝连接无人飞行器(UAV)的轨迹优化难题。在大多数情况下,优化无人飞行器轨迹必须确保可靠的网络连接。然而,由于地面基站主要是为地面用户设计的,因此在三维空间实现可靠的连接是一个巨大的挑战。此外,无人飞行器只能获得其访问过的区域的网络信息,而无法获得全球网络信息。为解决这一问题,我们提出了一种协作方法,即多个无人机通过联合学习创建一个中断概率的全局模型,从而实现更精确、更有效的轨迹设计。基于构建的全局信息,我们进行了轨迹设计。最初,我们引入了 A-star (A∗) 算法,用于小规模场景下的轨迹设计。然而,考虑到 A∗ 算法在大规模场景中的局限性,我们进一步引入了改进的快速探索随机树(RRTs)算法,用于加权路径优化。仿真结果验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Radio Map Reconstruction and Trajectory Optimization for Cellular-Connected UAVs
This paper introduces an innovative approach to address the trajectory optimization challenge for cellular-connected unmanned aerial vehicles (UAVs) operating in three-dimensional (3D) space. In most cases, optimizing UAV trajectories necessitates ensuring reliable network connectivity. However, achieving dependable connectivity in 3D space poses a significant challenge due to terrestrial base stations primarily designed for ground users. Additionally, UAVs possess network information only for the areas they have visited, with global network information being inaccessible. To address this issue, we propose a collaborative approach in which multiple UAVs create a global model of outage probability using federated learning, enabling more precise and effective trajectory design. Building upon the constructed global information, we conduct the trajectory design. Initially, we introduce A-star (A∗) algorithm for trajectory design in small-scale scenarios. Nevertheless, recognizing the limitations of A∗ algorithm in large-scale scenarios, we further introduce improved rapidly-exploring random trees (RRTs) algorithm for weighted path optimization. Simulation results are provided to validate the effectiveness of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信