有时间延迟的时间分数奇异扰动对流扩散问题的非标准有限差分法

IF 1.4 Q2 MATHEMATICS, APPLIED
Worku Tilahun Aniley, Gemechis File Duressa
{"title":"有时间延迟的时间分数奇异扰动对流扩散问题的非标准有限差分法","authors":"Worku Tilahun Aniley,&nbsp;Gemechis File Duressa","doi":"10.1016/j.rinam.2024.100432","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, nonstandard finite difference method is presented for the numerical solution of time-fractional singularly perturbed convection–diffusion problems with a delay in time. The time-fractional derivative is considered in the Caputo sense and discretized using Crank–Nicholson technique. Then, a nonstandard finite difference scheme is constructed on a uniform mesh discretization along the spatial direction. The parameter-uniform convergence of the proposed method is proved rigorously and shown to be <span><math><mi>ɛ</mi></math></span>-uniform convergent with order of convergence <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>(</mo><mi>Δ</mi><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> along the temporal domain and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> along the spatial domain. Finally, the proposed scheme is validated using model examples and the computational results are in agreement with the theoretical expectation.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100432"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000025/pdfft?md5=9a2f6578e1a485443e0c9c0f0909e682&pid=1-s2.0-S2590037424000025-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonstandard finite difference method for time-fractional singularly perturbed convection–diffusion problems with a delay in time\",\"authors\":\"Worku Tilahun Aniley,&nbsp;Gemechis File Duressa\",\"doi\":\"10.1016/j.rinam.2024.100432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, nonstandard finite difference method is presented for the numerical solution of time-fractional singularly perturbed convection–diffusion problems with a delay in time. The time-fractional derivative is considered in the Caputo sense and discretized using Crank–Nicholson technique. Then, a nonstandard finite difference scheme is constructed on a uniform mesh discretization along the spatial direction. The parameter-uniform convergence of the proposed method is proved rigorously and shown to be <span><math><mi>ɛ</mi></math></span>-uniform convergent with order of convergence <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>(</mo><mi>Δ</mi><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> along the temporal domain and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> along the spatial domain. Finally, the proposed scheme is validated using model examples and the computational results are in agreement with the theoretical expectation.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"21 \",\"pages\":\"Article 100432\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000025/pdfft?md5=9a2f6578e1a485443e0c9c0f0909e682&pid=1-s2.0-S2590037424000025-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了非标准有限差分法,用于数值求解具有时间延迟的时间分数奇异扰动对流扩散问题。在 Caputo 意义上考虑了时间分数导数,并使用 Crank-Nicholson 技术对其进行离散化。然后,在沿空间方向的均匀网格离散上构建了非标准有限差分方案。严谨地证明了所提方法的参数均匀收敛性,并证明该方法具有ɛ均匀收敛性,时间域收敛阶数为 O((Δt)2),空间域收敛阶数为 M-1。最后,利用模型实例对所提方案进行了验证,计算结果与理论预期一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonstandard finite difference method for time-fractional singularly perturbed convection–diffusion problems with a delay in time

In this work, nonstandard finite difference method is presented for the numerical solution of time-fractional singularly perturbed convection–diffusion problems with a delay in time. The time-fractional derivative is considered in the Caputo sense and discretized using Crank–Nicholson technique. Then, a nonstandard finite difference scheme is constructed on a uniform mesh discretization along the spatial direction. The parameter-uniform convergence of the proposed method is proved rigorously and shown to be ɛ-uniform convergent with order of convergence O((Δt)2) along the temporal domain and M1 along the spatial domain. Finally, the proposed scheme is validated using model examples and the computational results are in agreement with the theoretical expectation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信