{"title":"噬菌体疗法中的噬菌体-宿主-免疫系统动力学:基本原理和数学模型。","authors":"Dongwoo Chae","doi":"10.12793/tcp.2023.31.e17","DOIUrl":null,"url":null,"abstract":"<p><p>Phage therapy is progressively being recognized as a viable alternative to conventional antibiotic treatments, particularly in the context of multi-drug resistant bacterial challenges. However, the intricacies of the pharmacokinetics and pharmacodynamics (PKPD) pertaining to phages remain inadequately elucidated. A salient characteristic of phage PKPD is the inherent ability of phages to undergo replication. In this review, I proffer mathematical models that delineate the intricate dynamics encompassing the phage, the host organism, and the immune system. Fundamental tenets associated with proliferative and inundation thresholds are explored, and distinctions between active and passive therapies are accentuated. Furthermore, I present models that aim to illuminate the multifaceted interactions amongst diverse phage strains and bacterial subpopulations, each possessing distinct sensitivities to phages. The synergistic relationship between phages and the immune system is critically examined, demonstrating how the host's immunological function can influence the requisite phage dose for an optimal therapeutic outcome. A profound understanding of the presented modeling methodologies is paramount for researchers in the realms of clinical pharmacology and PKPD modeling interested in phage therapy. Such insights facilitate a more nuanced interpretation of dose-response relationships, enable the selection of potent phages, and aid in the optimization of phage cocktails.</p>","PeriodicalId":23288,"journal":{"name":"Translational and Clinical Pharmacology","volume":"31 4","pages":"167-190"},"PeriodicalIF":1.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772058/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phage-host-immune system dynamics in bacteriophage therapy: basic principles and mathematical models.\",\"authors\":\"Dongwoo Chae\",\"doi\":\"10.12793/tcp.2023.31.e17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phage therapy is progressively being recognized as a viable alternative to conventional antibiotic treatments, particularly in the context of multi-drug resistant bacterial challenges. However, the intricacies of the pharmacokinetics and pharmacodynamics (PKPD) pertaining to phages remain inadequately elucidated. A salient characteristic of phage PKPD is the inherent ability of phages to undergo replication. In this review, I proffer mathematical models that delineate the intricate dynamics encompassing the phage, the host organism, and the immune system. Fundamental tenets associated with proliferative and inundation thresholds are explored, and distinctions between active and passive therapies are accentuated. Furthermore, I present models that aim to illuminate the multifaceted interactions amongst diverse phage strains and bacterial subpopulations, each possessing distinct sensitivities to phages. The synergistic relationship between phages and the immune system is critically examined, demonstrating how the host's immunological function can influence the requisite phage dose for an optimal therapeutic outcome. A profound understanding of the presented modeling methodologies is paramount for researchers in the realms of clinical pharmacology and PKPD modeling interested in phage therapy. Such insights facilitate a more nuanced interpretation of dose-response relationships, enable the selection of potent phages, and aid in the optimization of phage cocktails.</p>\",\"PeriodicalId\":23288,\"journal\":{\"name\":\"Translational and Clinical Pharmacology\",\"volume\":\"31 4\",\"pages\":\"167-190\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772058/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational and Clinical Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12793/tcp.2023.31.e17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational and Clinical Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12793/tcp.2023.31.e17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Phage-host-immune system dynamics in bacteriophage therapy: basic principles and mathematical models.
Phage therapy is progressively being recognized as a viable alternative to conventional antibiotic treatments, particularly in the context of multi-drug resistant bacterial challenges. However, the intricacies of the pharmacokinetics and pharmacodynamics (PKPD) pertaining to phages remain inadequately elucidated. A salient characteristic of phage PKPD is the inherent ability of phages to undergo replication. In this review, I proffer mathematical models that delineate the intricate dynamics encompassing the phage, the host organism, and the immune system. Fundamental tenets associated with proliferative and inundation thresholds are explored, and distinctions between active and passive therapies are accentuated. Furthermore, I present models that aim to illuminate the multifaceted interactions amongst diverse phage strains and bacterial subpopulations, each possessing distinct sensitivities to phages. The synergistic relationship between phages and the immune system is critically examined, demonstrating how the host's immunological function can influence the requisite phage dose for an optimal therapeutic outcome. A profound understanding of the presented modeling methodologies is paramount for researchers in the realms of clinical pharmacology and PKPD modeling interested in phage therapy. Such insights facilitate a more nuanced interpretation of dose-response relationships, enable the selection of potent phages, and aid in the optimization of phage cocktails.
期刊介绍:
Translational and Clinical Pharmacology (Transl Clin Pharmacol, TCP) is the official journal of the Korean Society for Clinical Pharmacology and Therapeutics (KSCPT). TCP is an interdisciplinary journal devoted to the dissemination of knowledge relating to all aspects of translational and clinical pharmacology. The categories for publication include pharmacokinetics (PK) and drug disposition, drug metabolism, pharmacodynamics (PD), clinical trials and design issues, pharmacogenomics and pharmacogenetics, pharmacometrics, pharmacoepidemiology, pharmacovigilence, and human pharmacology. Studies involving animal models, pharmacological characterization, and clinical trials are appropriate for consideration.