{"title":"q-RASTR 模型用于预测各种有毒化学物质对吡咯并蚜的影响。","authors":"V Ghosh, A Bhattacharjee, A Kumar, P K Ojha","doi":"10.1080/1062936X.2023.2298452","DOIUrl":null,"url":null,"abstract":"<p><p>A series of diverse organic compounds impose serious detrimental effects on the health of living organisms and the environment. Determination of the structural aspects of compounds that impart toxicity and evaluation of the same is crucial before public usage. The present study aims to determine the structural characteristics of compounds for <i>Tetrahymena pyriformis</i> toxicity using the q-RASTR (Quantitative Read Across Structure-Toxicity Relationship) model. It was developed using RASTR and 2-D descriptors for a dataset of 1792 compounds with defined endpoint (pIGC<sub>50</sub>) against a model organism, <i>T. pyriformis</i>. For the current study, the whole dataset was divided based on activity/property into the training and test sets, and the q-RASTR model was developed employing six descriptors (three latent variables) having <i>r</i><sup>2</sup>, <i>Q</i><sup>2</sup><sub>F1</sub> and <i>Q</i><sup>2</sup> values of 0.739, 0.767, and 0.735, respectively. The generated model was thoroughly validated using internationally recognized internal and external validation criteria to assess the model's dependability and predictability. It was highlighted that high molecular weight, aromatic hydroxyls, nitrogen, double bonds, and hydrophobicity increase the toxicity of organic compounds. The current study demonstrates the applicability of the RASTR algorithm in QSTR model development for the prediction of toxic chemicals (pIGC<sub>50</sub>) towards <i>T. pyriformis</i>.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"11-30"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"q-RASTR modelling for prediction of diverse toxic chemicals towards <i>T. pyriformis</i>.\",\"authors\":\"V Ghosh, A Bhattacharjee, A Kumar, P K Ojha\",\"doi\":\"10.1080/1062936X.2023.2298452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of diverse organic compounds impose serious detrimental effects on the health of living organisms and the environment. Determination of the structural aspects of compounds that impart toxicity and evaluation of the same is crucial before public usage. The present study aims to determine the structural characteristics of compounds for <i>Tetrahymena pyriformis</i> toxicity using the q-RASTR (Quantitative Read Across Structure-Toxicity Relationship) model. It was developed using RASTR and 2-D descriptors for a dataset of 1792 compounds with defined endpoint (pIGC<sub>50</sub>) against a model organism, <i>T. pyriformis</i>. For the current study, the whole dataset was divided based on activity/property into the training and test sets, and the q-RASTR model was developed employing six descriptors (three latent variables) having <i>r</i><sup>2</sup>, <i>Q</i><sup>2</sup><sub>F1</sub> and <i>Q</i><sup>2</sup> values of 0.739, 0.767, and 0.735, respectively. The generated model was thoroughly validated using internationally recognized internal and external validation criteria to assess the model's dependability and predictability. It was highlighted that high molecular weight, aromatic hydroxyls, nitrogen, double bonds, and hydrophobicity increase the toxicity of organic compounds. The current study demonstrates the applicability of the RASTR algorithm in QSTR model development for the prediction of toxic chemicals (pIGC<sub>50</sub>) towards <i>T. pyriformis</i>.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\" \",\"pages\":\"11-30\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2023.2298452\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2298452","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
q-RASTR modelling for prediction of diverse toxic chemicals towards T. pyriformis.
A series of diverse organic compounds impose serious detrimental effects on the health of living organisms and the environment. Determination of the structural aspects of compounds that impart toxicity and evaluation of the same is crucial before public usage. The present study aims to determine the structural characteristics of compounds for Tetrahymena pyriformis toxicity using the q-RASTR (Quantitative Read Across Structure-Toxicity Relationship) model. It was developed using RASTR and 2-D descriptors for a dataset of 1792 compounds with defined endpoint (pIGC50) against a model organism, T. pyriformis. For the current study, the whole dataset was divided based on activity/property into the training and test sets, and the q-RASTR model was developed employing six descriptors (three latent variables) having r2, Q2F1 and Q2 values of 0.739, 0.767, and 0.735, respectively. The generated model was thoroughly validated using internationally recognized internal and external validation criteria to assess the model's dependability and predictability. It was highlighted that high molecular weight, aromatic hydroxyls, nitrogen, double bonds, and hydrophobicity increase the toxicity of organic compounds. The current study demonstrates the applicability of the RASTR algorithm in QSTR model development for the prediction of toxic chemicals (pIGC50) towards T. pyriformis.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.